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Abstract

This paper presents a semi-supervised anomaly detection framework for distinguishing harmful prompts from be-
nign ones in natural language. The proposed method serves as a defensive layer for Large Language Models (LLMs),
eliminating the need for expensive model retraining or fine-tuning. Our approach is formulated as a one-class clas-
sification problem, wherein an autoencoder is trained exclusively on harmful prompts represented by sentence-level
transformer embeddings. By learning to reconstruct only harmful inputs, the model identifies benign prompts as out-
of-distribution samples based on reconstruction error. The framework leverages pre-trained sentence transformers for
creating embeddings and explores architectural variations in the autoencoder to enhance performance and robustness.
We further develop an ensemble approach that combines multiple sentence transformer embedding models to improve
classification stability and resilience against adversarial examples. A formal definition of the anomaly detection task
is provided, along with detailed descriptions of system design and threshold calibration strategies. The implemen-
tation demonstrates high recall and precision in detecting harmful prompts while reliably flagging benign content as
anomalous. The code can be found publicly athttps://github.com/azhoutari/cse895-projectl

1 Introduction and Motivation

Despite significant improvements in safety measures, Large Language Models (LLMs) remain vulnerable to harmful
prompts that can bypass content filters and elicit dangerous, unethical, or illegal content. While retraining or fine-
tuning LLMs to enhance safety is possible, it requires substantial computational resources and expense. Our work
addresses this challenge by developing an external defensive layer that can reliably filter out harmful prompts before
they reach the LLM, eliminating the need to modify the model itself. We propose a one-class anomaly detection frame-
work using autoencoders trained on sentence embeddings of harmful prompts. The key advantage of our approach is
its simplicity and efficiency—it requires only examples of harmful content without any labeled benign data, making
dataset collection straightforward. This creates a practical, cost-effective shield for any LLM deployment that can be
implemented with minimal computational resources and without access to the protected model’s weights.

2 Related Work

Anomaly detection has been extensively studied, with foundational work like One-Class SVM [5]], which estimates a
high-dimensional support boundary, and Isolation Forest [6]], which isolates anomalies using randomized trees.

Autoencoders have become central in high-dimensional anomaly detection. Sakurada and Yairi [[10] showed how
autoencoders can detect anomalies using reconstruction error, while Zhou and Paffenroth [11] proposed a robust
variant using modified loss functions to improve resistance to noise.

In natural language processing, BERT [7] and Sentence-BERT [§] have enabled deep semantic understanding via
transformer-based embeddings. While most harmful content detection tasks are handled with supervised learning [9],
our work follows a semi-supervised route.

Recent work by Zou et al. [[1] and Shen et al. [2] has focused on jailbreak prompts and adversarial attacks on large
language models. Unlike their evaluation-focused contributions, our model is trained only on harmful prompts and
flags benign inputs as anomalies — a less explored but promising approach.


https://github.com/azhoutari/cse895-project

3 Problem Definition

Let P denote the set of all possible text prompts, and let M C P represent the subset of malicious prompts. Given
access only to a collection of malicious prompts Mpin C M, we aim to learn a classifier C' : P — {0,1} that
determines whether a new prompt p € P belongs to M (malicious) or P \ M (benign).

We formulate this as a one-class anomaly detection problem. Using an embedding function ¢ : P — R? that maps
prompts to a d-dimensional space, we represent each prompt p as a vector = ¢(p) € R? Our task is to learn a
reconstruction function f(x) = D(E(x)) comprised of an encoder E and decoder D that minimizes the reconstruction
error on malicious embeddings.

For classification, we establish a threshold 7 based on the distribution of reconstruction errors on the training set.
The classifier is defined as:

Clp) = {1 (malicious), if || f(¢(p)) — ¢(p)[I5 < 7

0 (benign), otherwise

This approach aims to minimize the expected misclassification rate:

mCi‘n/pep 1[C(p) # 1[p € M]]dP(p)

where 1[-] denotes the indicator function and P is a probability measure over P. The core challenge is learning
a decision boundary that separates classes when training data contains only malicious examples without any benign
counterexamples. This semi-supervised approach differs from supervised classification (requiring examples from all
classes) and purely unsupervised anomaly detection.

4 Proposed Method

Our method consists of two primary stages:

1. Feature Extraction: We use pre-trained sentence transformers such as a11-MiniLM-L6-v2 to convert text
prompts into dense embeddings = € RY.

2. Anomaly Detection: We train an autoencoder comprising an encoder E(-) and a decoder D(-) on harmful
prompt embeddings. The autoencoder is trained using the MSE loss:

L = ||z — D(E(x))|I3.

The choice of MSE over cross entropy loss is based on the following considerations:

* Continuous Outputs: Sentence transformer embeddings are high-dimensional continuous vectors. MSE
loss directly quantifies the Euclidean distance between the original embedding and its reconstruction, mak-
ing it well-suited to capture reconstruction fidelity.

* Reconstruction Objective: Our autoencoder’s goal is to accurately reconstruct the continuous embedding
vector. Cross entropy is typically used for classification tasks involving probability distributions or discrete
outputs, whereas MSE naturally addresses regression tasks.

¢ Empirical Performance: In our experiments, MSE provided a robust signal for detecting deviations (i.e.,
benign prompts) based on reconstruction error.

At test time, prompts with high reconstruction errors are flagged as benign.

To enhance robustness, we also developed an ensemble approach using ten different sentence transformer models.
For each model (e.g., al1-MiniLM-L6-v2), we train a separate autoencoder, resulting in ten specialized mod-
els. Each model generates a reconstruction error and binary classification based on its individual threshold. We then
explore multiple ensemble strategies: (1) majority voting, where the final classification follows the majority of individ-
ual predictions; (2) weighted voting, which assigns higher weights to better-performing models; (3) average threshold,
which compares the average error to the average threshold; and (4) minimum error, which classifies a prompt as mali-
cious if any single model classifies it as such. This multi-model approach provides added resilience against adversarial
examples and improves overall classification stability.

Figure|l|shows a schematic of our deep learning architecture.
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Figure 1: Architecture of the Sentence-Transformer-Based AutoEncoder. Prompts are embedded using a sentence
transfromer, then passed through a fully-connected encoder-decoder architecture with ReLU activations and dropout
regularization.

S Experimental Setup

5.1 Training and Evaluation Datasets

We use malicious prompts exclusively from the following datasets:

* AdvBench [1]: Universal and Transferable Adversarial Attacks on Aligned Language Models (Zou et al., 2023).
¢ In-The-Wild Jailbreak Prompts on LLMs [2]: (Shen et al., 2024).

These datasets are split 80/20 (80% for training and 20% for evaluation).

5.2 Testing Datasets
Testing was performed on:

* JailbreakBench/JBB-Behaviors [3]: an open robustness benchmark for jailbreaking large language models.
* WikiQA [4]]: where all WikiQA questions were treated as benign.

5.3 Thresholding Strategy

For evaluation, we compute the reconstruction errors on the test set and set the threshold at the 95th percentile of
the training set errors. This strategy ensures that approximately 95% of the harmful prompts (training data) are
reconstructed with low error, while benign prompts generate higher errors and are flagged as anomalies.

5.4 Implementation and Computational Resources

The autoencoder was implemented in Python using PyTorch and the Hugging Face Transformers library where sen-
tence transformer embeddings were extracted using various pre-trained models. Training was executed on an NVIDIA
RTX 8000 GPU, and the overall computational demand was minimal.

6 Results and Discussion

6.1 Comparative Analysis of Sentence Transformer Models

Figure [2 shows our comparative analysis of ten sentence transformer models. The best performance was observed for
the RoBERTa-based model (all-roberta-large-vl).



6.2 Ensemble Method Comparison

Figure [3] illustrates the performance comparison among four different ensemble methods. Although the best single
model yields the highest performance, the ensemble method achieves competitive, albeit slightly lower, overall metrics.

6.3 Confusion Matrix Analysis

Figure ] combines the confusion matrices of the best-performing transformer model (all-roberta-large-v1) and the best
ensemble method as subfigures. The following metrics were obtained for the best transformer model:

Table 1: Performance Metrics Comparison

Model Accuracy Precision Recall F1 Score

RoBERTa-based Transformer 98.77% 100% 91% 95.29%
Best Ensemble Method (Weighted Vote) 97.27% 100% 80% 88.89%
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Figure 2: Comparative analysis of ten (10) different sentence transformer models used as embeddings.

6.4 Discussion

The experimental results demonstrate that our approach effectively distinguishes harmful prompts from benign ones.
The RoBERTa-based model, with an accuracy of 98.77% and recall of 91%, confirms that training solely on malicious
prompts allows the autoencoder to capture the nuances of harmful content. The thresholding strategy (95th percentile)
proved crucial in separating benign samples, which produced higher reconstruction errors. Although the ensemble
method (Wighted Vote) yields marginally lower performance (accuracy of 97.27%, precision 100%, recall 80%, and
F1 of 88.89%), it validates that alternative combined strategies can be competitive. The testing on WikiQA—where
all questions were treated as benign—demonstrates robust generalization of our model across diverse prompt formats.

7 Conclusion

We presented a semi-supervised one-class anomaly detection framework using pre-trained sentence transformer em-
beddings and autoencoders. By training solely on harmful prompts, our method successfully flags benign prompts
as anomalies based on reconstruction error. Our experiments show promising recall and precision, and our work
opens avenues for further refinements—including testing with alternative backbone models and expanding the dataset.
Future research will explore improved architectural designs and additional ensemble techniques to further optimize
performance.
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Figure 3: Performance comparison of four (4) ensemble methods.
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Figure 4: Confusion matrices for the best transformer model and the best ensemble method.
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Appendix

A Detailed Evaluation Results
A.1 Individual Model Performance

Table [2| presents the detailed performance metrics for each individual sentence transformer model evaluated in our
study.

A.2 Ensemble Method Comparison

Table [3|shows the performance metrics for the four ensemble methods evaluated in our study. The results demonstrate
that while ensemble methods provide competitive performance, the best individual model (all-roberta-large-v1) still
outperforms all ensemble approaches.
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Table 2: Performance Metrics for Individual Sentence Transformer Models

Model Accuracy Precision Recall F1 Specc. TP FP TN FN
all-MiniLM-L6-v2 0.963 0.940 0.780 0.852 0.992 78 5 628 22
all-distilroberta-v1 0.960 0.961 0.740 0.836 0995 74 3 630 26
all-MiniLM-L12-v2 0.965 0.930 0.800 0.860 0.991 80 6 627 20
paraphrase-albert-small-v2 0.951 0.921 0.700 0.795 0.991 70 6 627 30
all-roberta-large-v1 0.988 1.000 0910 0.953 1.000 91 0 633 9
all-mpnet-base-v2 0.980 1.000 0.850 0919 1.000 85 0 633 15
multi-qa-mpnet-base-dot-v1 0.888 0.566 0.770  0.653 0907 77 59 574 23
paraphrase-multilingual-mpnet-base-v2 0.136 0.136 1.000 0.240 0.000 100 633 O 0
all-MiniLM-L6-v1 0.940 0.878 0.650 0.747 0986 65 9 624 35
Table 3: Performance Metrics for Different Ensemble Methods

Ensemble Method Accuracy Precision Recall F1 Spec. TP FP TN FN

Average Threshold 0.970 0.890 0.890 0.890 0983 8 11 622 11

Majority Vote 0.971 0.965 0.820 0.886 0.995 82 3 630 18

Minimum Error 0.136 0.136 1.000  0.240 0.000 100 633 0 0

Weighted Vote 0.973 1.000 0.800 0.889 1.000 80 0 633 20
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