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Abstract— IntelliAntSearch proposes a new addition to 

enhancing ant-colony search algorithms within unstructured 
peer- to-peer (P2P) networks. Building upon the foundations of 
AntP2PR and DLAntP2P, IntelliAntSearch extends the 
capabilities of these original algorithms by integrating machine 
learning techniques. Specifically, our approach leverages Long 
Short-Term Memory (LSTM) networks to dynamically adjust 
parameters overlooked in both AntP2PR and its successor, 
DLAntP2P. By learning from historical data, LSTM networks 
allow IntelliAntSearch to fine-tune parameters related to 
pheromone and time-to-live (TTL) updates in real time, 
thereby optimizing search strategies adaptively. Results from 
simulations on PeerSIM show that IntelliAntSearch, when 
adapted on AntP2PR, performs slightly better than the original 
algorithm in terms of query success rate, but increases the 
message overhead in the network. Meanwhile, IntelliAntSearch 
applied to DLAntP2P leads to a greater improvement in 
success rate while retaining almost the same query count. 
Overall, IntelliAntSearch was largely able to achieve its goal of 
enhancing search efficiency, scalability, and adaptability in 
search for dynamic P2P environments.  

Keywords—unstructured peer-to-peer networks, ant colony, ant 
search, time-series analysis, Long Short Term Memory (LSTM), 
TTL (Time to Live)  

I. INTRODUCTION AND MOTIVATION 

 Unstructured peer-to-peer (P2P) networks have gained 
significant attention in recent years due to their decentralized 
nature, which enables robust sharing and distribution of 
resources without the need for centralized servers. Unlike 
structured P2P networks, which rely on predefined 
organizational structures for efficient data lookup and routing, 
unstructured P2P networks offer a more flexible approach, 
where peers connect directly to one another without strict 
guidelines. However, this flexibility comes with its own set of 
challenges and advantages. As unstructured P2P networks 
expand to encompass thousands to millions of nodes, they are 
accompanied by regular fluctuations in peer availability and 
resource distribution. Traditional search algorithms, which 
include flooding or random-based techniques, are not scalable 
nor adaptable enough to accommodate such dynamicity or 
network size. Given this fact, it is crucial to develop novel 
search techniques that can flexibly adjust to these changes in 
real time. The ability to adapt allows search algorithms to 
maintain optimal query efficiency and resource discovery, 
thereby simultaneously reducing network load while 

increasing query success rate – two variables that are often 
thought to be tradeoffs.  

 Ant colony algorithms are a class of biologically-inspired 
algorithms that promise to offer robustness and adaptability in 
changing environments. They are based on the real-life 
phenomenon of stigmergy and swarms, in which ants follow 
each other’s pheromones to trace the best path to a food 
source. As the pheromones accumulate, the most efficient and 
shortest paths are reinforced and become more apparent over 
time. These principles have been applied to many problems in 
Computer Science, including search in unstructured P2P 
algorithms as ant colony search does not require the ants to 
have global knowledge about the network they are traversing 
[5]. Many ant colony search algorithms, or ant-based routing 
methods, have been proposed over the years, including 
AntSearch [6], SemAnt [5], AntP2PR [1], and DLAntP2P [4], 
many of which have shown promising results in improving 
both network traffic and query hits when compared to 
traditional techniques.  

    AntP2PR, first proposed by Loukos et al. in 2010, laid the 
foundation for its successor DLAntP2P, which was proposed 
by Ahmadi et al. in 2016. Both algorithms were designed to 
address the challenge of free-riders in the network and to 
minimize the amount of traffic dedicated to resource 
discovery. While these algorithms have demonstrated 
adaptability and achieved relatively high success rates, they 
rely on static parameters manually set for updating pheromone 
values of peers and determining the time-to-live of messages.  
Such static use of parameters could lead to suboptimal routing 
decisions and reduced query efficiency, especially in dynamic 
network environments. To harness the overlooked potential 
for further dynamicity in these algorithms, IntelliAntSearch 
proposes to integrate machine learning techniques into the 
original AntP2PR and DLAntP2P algorithms. Specifically, 
IntelliAntSearch employs Long Short-Term Memory (LSTM) 
networks, which utilize historical data on query successes and 
failures to dynamically adapt the aforementioned parameters 
in response to real-time network conditions. Within the P2P 
network, neighbor selection and thus the movement of virtual, 
abstracted “ants” are then drawn on learned patterns from past 
data, which should lead to enhanced accuracy and efficiency 
in resource discovery. Using simulations conducted on the 
platform PeerSIM, our results mostly substantiate this 
assertion. IntelliAntSearch, when integrated into AntP2PR, 
leads to a slight improvement in query success rate over the 
original algorithm. However, this also leads to an increase in 
messages generated in the network, therefore increasing 



   

 

   

 

network load. Meanwhile, we see a greater overall 
improvement when integrating IntelliAntSearch into 
DLAntP2P. Our results show that IntelliAntSearch leads to a 
higher success rate than that of the original algorithm, while 
still retaining an almost exact query count. Furthermore, this 
improvement is greater in comparison to that of the 
IntelliAntSearch-integrated AntP2PR algorithm.   

 The subsequent sections of this paper are structured as 
follows. Section II provides an overview of previous ant 
colony algorithms, including AntP2PR and DLAntP2P, as 
well as other swarm intelligence-based methods we have 
surveyed in preparation for this study. Section III describes the 
implementation details of IntelliAntSearch, which includes 
background information on the workings of LSTM and the 
PeerSim platform. Section IV describes the methodology and 
metrics used for testing and evaluating the algorithm against 
previous methods such as K-Walker and Flooding. Finally, 
section V includes the results of our simulations as well as 
their analysis. 

II. RELATED WORK  

A. Ant Colony Algorithms 

Surveying various existing studies, we have explored both 
biologically inspired and non-biologically inspired 
approaches to querying in unstructured P2P networks while 
determining the project’s direction. Biologically inspired 
methods, especially ant colony algorithms, are of particular  
interest as they demonstrate resilience and flexibility in 
changing environmental conditions.  

Ant colony algorithms in unstructured P2P networks 
typically operate as follows. Initially, virtual “ants”, which are 
represented by queries or messages, traverse the network to 
search for resources. They can either be released and 
forwarded en masse, meaning they are sent out collectively or 
in large groups, akin to a flooding-like approach, or be guided 
individually through the network like a 1-random walker 
algorithm, moving to one neighboring node at a time. “Ants” 
make their decision to visit a neighboring node based on the 
pheromone value of such node or the edge leading to it. 
Pheromone values serve as a form of distributed information 
about the quality of paths in the network, where nodes with 
higher pheromone values, for example, are more likely to be 
visited by the ants. Upon reaching a query hit, the “ants” 
communicate their findings back to the initiator of the query, 
updating pheromone values of each node or edge along the 
successful path in the process. This update reinforces the path 
that led to the successful query hit, making it more attractive 
for future queries. Over time, the most efficient paths are 
reinforced solely through local and indirect communication 
among the ants, leading to the emergence of optimized routing 
paths in the network.  

Within the realm of ant colony algorithms, we have 
reviewed SemAnt [5], AntSearch [6], AntP2PR [1], as well as 
DLAntP2P and LantP2P [4], which are extensions of the 
previous AntP2PR algorithm.  

1. SemAnt [5] 

 SemAnt was first proposed by Michlmayr 
in 2006. An earlier ant colony search algorithm, 
SemAnt was specifically developed with 
applications for distributed search engines in mind 
[5]. Distributed search engines are systems designed 
to retrieve and index information from multiple 
sources across a network. Users query for documents 

using keywords or phrases that describe what they 
are looking for. Upon receiving a query, distributed 
search engines distribute the query across the 
network using various search algorithms.  

 SemAnt operates on a few assumptions. In 
SemAnt, a controlled vocabulary of keywords are 
known as "concepts", and queries are assumed to be 
a series of concepts stringed together by a Boolean 
OR operator. This means that documents are 
retrieved if they are associated with at least one of 
the concepts in the query. Furthermore, each concept 
is associated with a unique pheromone type. This 
requires each peer in the network to maintain a 
routing table that records the amount of pheromone 
associated with every type, and do so for each edge 
leading to its immediate neighbors.  

 A “forward ant” is created by an initiator 
peer upon receiving a query. The ant travels the 
network until it is able to retrieve the document or its 
time-to-live (TTL) runs out. As the forward ant 
traverses the network, it decides, based on a 
probability, whether it wants to explore edges with 
lower pheromones, or exploit edges with the 
strongest pheromones.  Upon reaching a hit, a 
“backward ant” is created to bring the document 
back to the initiator, updating pheromone values at 
each intermediate edge in the process. The strength 
of pheromone updates depends on the number of 
documents retrieved as well as the length of the path. 
This effectively leaves a pheromone trail for future 
ants to follow and encourages the formation of short 
optimized routing paths. True to real ant colonies, 
pheromone trails in SemAnt evaporate over a set 
time interval and by a predetermined amount of 
pheromones evaporated per time unit.  

 While results show that SemAnt 
outperforms k-random walk in hit rate and resource 
usage, that is, by traversing fewer edges, Michlmayr 
did not test SemAnt on a dynamic network, stating 
that "a static network topology and document 
distribution are assumed" [5, p.4] while intending to 
"evaluate and improve the performance of the 
algorithm in a dynamic setting" [5, p.4] in a future 
study. Furthermore, while pheromones are 
implemented with a degree of dynamicity in 
SemAnt, there is still potential for adaptive 
pheromone trails to limit routing towards leaving 
peers [5, p.4]. 

2. AntSearch [6] 

 AntSearch was developed by Wu et al. in 
2006. It was proposed as a solution to avoiding free-
riders in the network, which are defined as peers 
sharing less than 100 files [6]. Such peers take 
advantage of resources in the network but rarely 
contribute to it. Therefore, a significant amount of 
network traffic can be reduced by preventing 
messages from being sent to free-riders. In essence, 
AntSearch is a controlled flooding approach. 
Through AntSearch, each peer in the network has 
knowledge of its own pheromone value as well as 
that of its immediate neighbors. Pheromone values in 
AntSearch are effectively query hit rates. In 
comparison to other ant colony approaches surveyed 
for this study, AntSearch follows the ant colony 



   

 

   

 

protocol more loosely. AntSearch operates in two 
distinct phases – the “Probe Phase” and the 
“Flooding Phase”.  

 In the Probe Phase, the query initiator 
floods a few neighbors with a small TTL value, 
which is recommended to be a TTL of 2. The number 
of neighbors are determined using a range of k 
values, which denotes the percentage of peers with 
the highest pheromones to flood to. The purpose of 
this phase is to effectively approximate the number 
of results that can be retrieved for a query, as well as 
to predict the number of peers needed to reach for 
enough results to be obtained. Using the results 
obtained from this phase, a suitable k value is then 
chosen for the next Flooding Phase. During the 
Flooding Phase, the k value is fixed. AntSearch 
floods the algorithm towards peers with k% highest 
pheromone values in the network until they are all 
visited or enough results are retrieved.  

 The original study by Wu et al. demonstrate 
an average reduction of 50% in network traffic while 
still achieving sufficient results and maintaining 
comparable search latency to DQ+, an algorithm that 
floods to all peers irrespective of their reliability. 
While promising, this algorithm has the potential for 
further dynamicity using an adaptive k parameter 
during the Flooding Phase. Currently, the static k 
parameter means that AntSearch floods to the same 
proportion of neighbors from every node. By 
dynamically adjusting degrees of selectiveness at 
different areas of the network, the algorithm will 
further reduce network traffic.  Furthermore, 
AntSearch can also benefit from dynamically 
adjusting TTL values.   

3. AntP2PR [1] 

 AntP2PR, introduced by Loukos et al. in 
2011, shares the common objective of mitigating 
free-riders in the network and minimizing network 
traffic. Its focus lies specifically in decreasing the 
traffic allocated for resource discovery, diverting it 
instead towards content transfer. Like AntSearch, 
peers in AntP2PR know of and utilize the pheromone 
values of their immediate neighbors to make their 
decisions. However, unlike AntSearch, peers in 
AntP2PR do not have information regarding their 
own pheromone values, as these values are relative 
to those of immediate neighbors. Also similar to 
AntSearch is AntP2PR’s use of controlled flooding, 
however with varying TTL values determined 
dynamically based on pheromones instead.  

 Peers in AntP2PR maintain two tables: one 
for storing the pheromone values of their immediate 
neighbors, and another for recording those 
neighbors’ query hits. When a query arrives at a 
node, the peer check for matches to its local 
repository. If no match occurs, the peer forwards the 
query to immediate neighbors whose pheromone 
values match a certain condition and if TTL is above 
zero. The condition, which involves using low and 
high pheromone thresholds predefined by the 
researcher, allows the peer to perform a dynamic 
query TTL update. The dynamic TTL update process 
is as follows: TTL is decremented if the neighbor’s 
pheromones are less than the low bound, and is 

incremented if higher than the high bound; 
otherwise, it remains unchanged. This mechanism 
restricts the number of neighbors to which a query 
can be forwarded, making it less likely for the query 
to travel on suboptimal paths. Meanwhile, 
pheromones are updated when a query hit occurs. 
The process first involves visiting nodes on the 
successful path and incrementing appropriate entries 
in their hit count tables. Following an update in their 
hit count tables, each node then uses the new query 
hit values to update and normalize their pheromone 
tables. Alongside to query hit count, two 
predetermined parameters q1 and q2 are involved in 
determining the strength of these updates.  

 Results for AntP2PR demonstrate a typical 
tradeoff between network load and query hit or 
failure rate, that is, AntP2PR's reduction in the 
number of query packets generated comes at the cost 
of an increased rate of queries failing to return a 
result. Furthermore, while sensitivity analysis for 
parameters and pheromone thresholds was 
conducted in the original study, these values 
nonetheless remain static throughout the search 
process and must be manually chosen by the 
researcher. This makes AntP2PR difficult to 
implement in real-world networks. Additionally, 
AntP2PR was simulated on a network with non-
dynamic topology consisting of 200 nodes, which is 
contrary to Loukos et al.’s claim that the algorithm 
“enables the network to adjust to the dynamic nature 
of Peer-to-Peer networks” [1, p.655].  

4. DLAntP2P & LAntP2P [4] 

 Both DLAntP2P and LAntP2P were 
proposed by Ahmadi et al. in 2016 as an extension 
and improvement to the previous AntP2PR. Instead 
of a controlled flooding approach, DLAntP2P and 
LAntP2P employ adaptive decision-making 
capabilities to explicitly determine the number of 
ants to create and select which neighbor(s) to 
forward to. Although DLAntP2P and LAntP2P adopt 
the same pheromone and TTL update protocols of 
AntP2PR, the pheromones in these algorithms are 
also treated as probabilities for selecting ant actions 
using learning automata. 

 In DLAntP2P, each peer in the network 
hosts a variable learning automaton that employs the 
P-LRP learning algorithm. Similar to AntP2PR, each 
peer maintains a table recording the pheromone 
values associated with each of their immediate 
neighbors. Specifically, these pheromone values are 
assigned to the edges leading to those immediate 
neighbors. Initially, when a query is initiated, the 
initiator peer broadcasts the query to neighbors with 
the highest pheromone values, based on a randomly 
generated minimum pheromone threshold “r”. 
Following this initial phase, the query or “ant” 
progresses through the network one neighbor at a 
time, rather than being replicated across several 
neighbors. This is accomplished by having the 
learning automaton at each peer select the edge with 
the highest pheromone value whenever an ant arrives 
at it.  

 In DLAntP2P, the query initiator doesn't 
utilize its learning automaton. Therefore, LAntP2P 



   

 

   

 

proposes an alternative approach to enable all peers 
in the network to benefit from adaptive decision-
making. In LAntP2P, each edge leading to a 
neighboring node is associated with two actions of 
varying probabilities: "creating the ant" and "not 
creating an ant". When a query is generated and 
cannot be resolved by the initiator, its learning 
automaton selects neighbors with high probabilities 
for "creating an ant" to forward the query. 
Intermediate nodes in LAntP2P function similarly to 
that of DLAntP2P, where the ant is replicated to 
progress through the network one neighbor at a time. 

 Results in the Ahmadi et al. study show that 
DLAntP2P and LAntP2P outperform AntP2PR and 
k-random walk in both success rate and message 
overhead [4]. DLAntP2P performs better than 
LAntP2P in generating fewer messages overall, but 
also having a higher success rate. In terms of query 
hits, AntP2PR trumps both algorithms simply 
because it is a controlled flooding approach and visits 
more nodes in the network at a time. Although 
DLAntP2P and LAntP2P demonstrate significantly 
greater adaptiveness and performance compared to 
AntP2PR, both algorithms still rely on the same 
pheromone and TTL update protocols as the original 
algorithm. These protocols continue to utilize static 
parameters that remain constant throughout the 
querying process and must be manually chosen by 
the researcher.  

 Overall, several limitations were identified in previous 
studies, prompting the development of IntelliAntSearch. 
Firstly, SemAnt and AntP2PR were evaluated in experiments 
conducted on static networks, which is a significant drawback 
due to the unrealistic nature of static network conditions. 
Additionally, none of the surveyed algorithms, including 
those simulated under dynamic conditions, were tested under 
different churn rates to assess their robustness and viability. 
Moreover, all of the surveyed algorithms except for SemAnt 
utilize static parameters for updating pheromone values and 
pheromone-based decision-making throughout the querying 
process. 

B. Swarm Intelligence Algorithms [7] 

In addition to ant colony algorithms, we have also 
surveyed two swarm intelligence algorithms based on the 
mechanisms of the Physarum Polycephalum Slime Mold and 
the Bark Beetle [7]. These algorithms both employ a form of 
controlled flooding, similar to that of AntP2PR. 

1. The Phyasrum Polycephalum 

There are two distinct phases to the Physarum 
Polycephalum Slime Mold algorithm: a forward 
phase and a backward phase. In summary, the 
forward phase occurs when the queries, or agents, are 
searching for resources. Once a query is resolved, the 
backward phase begins and agents retrace their steps 
back to the initiator peer. Similar to AntP2PR, each 
peer in the Slime Mold algorithm maintains a routing 
table that records flow values, serving as 
probabilities for selecting neighboring edges. This 
mechanism is meant to mimic how slime molds 
dynamically adjust their growth patterns in response 
to environmental cues, retracting and extending their 
pseudopodia in multiple directions depending on the 
concentration of nutrients. Upon a successful query 
hit and during the backward phase, the routing tables 

of peers on the successful path are retraced and 
updated using a delta function (1). In addition to 
probability-based decision-making, the Slime Mold 
Algorithm allows for agents to revisit peers, unlike 
AntP2PR. If an agent during the forward phase has 
visited all neighbors of a node, it chooses its next hop 
uniformly.  

2. Bark Beetles 

 The Bark Beetles algorithm works similarly 
to the ant colony and slime mold algorithms. In 
nature, bark beetles detect and infest weakened trees 
through pheromones emitted by other beetles. They 
do this in order to reproduce within the tree. Over 
time, the aggregation of beetle pheromones on trees 
allows beetle swarms to select the most suitable host 
for infestation. Adapting this to P2P routing, the 
process begins when a source peer initiates a search 
query, spawning a configurable number of beetles. 
Each beetle is uniquely identified by an identification 
number. Within the network, each node maintains a 
pheromone matrix, initially empty, which tracks 
pheromone concentrations for discovered resources 
among neighboring nodes. Several configurable 
parameters, such as Time-To-Live (TTL), beetle 
count (akin to ant count), and pheromone types, can 
be adjusted prior to the querying process by the 
experimenter.  

 To navigate the network, beetles use a 
decision rule, selecting the neighbor with the highest 
pheromone concentration. Upon locating the 
resource, a beetle disseminates a notification 
message throughout the network, conveying 
information about the resource. If a beetle's TTL 
expires or it visits all neighboring nodes without 
finding a resource, it returns to the query initiator. 
Additionally, this algorithm offers the flexibility to 
prioritize either exploitation or exploration through a 
single parameter known as "sufficient pheromone 
concentration." 

III. PROPOSED WORK AND TECHNICAL APPROACH 

A. PeerSIM: Simulating P2P Network Dynamics [8] 

To model and evaluate the performance of 
IntelliAntSearch, we utilized PeerSIM, a robust P2P network 
simulator written in Java [8]. PeerSIM is especially well-
suited for our needs due to its flexibility and the extensible 
simulation framework it provides. The platform supports 
simulations with a large number of nodes, making it suitable 
for testing scalability in networks that may expand 
dynamically in size. This simulator has allowed us to construct 
an environment that mirrors the complexities of real-world 
P2P networks, enabling us to test and refine our LSTM-based 
routing algorithm under varied conditions and scenarios.  

To implement a search protocol in PeerSim, there are six 
types of objects to consider:  

1. The Node object, which represents peers in the P2P 
network 

2. The Protocol object, which defines an operation to be 
performed at each node during a timestep 

3. The Linkable object, which provides an interface for 
other Protocols to access neighboring nodes 



   

 

   

 

4. The Transport object, which is a Protocol responsible 
for forwarding queries in the network and simulating 
drops or delays 

5. The Control object, which can be scheduled for 
execution at different points during the simulation, 
either to schedule queries, modify the simulation, or 
observe and collect statistical data.  

6. The Initializer, which is of type Control. They form 
the overlay network by instantiating edges between 
nodes according to different configurable 
mechanisms (for example, random joining) 

Simulations in PeerSim can be easily set up using 
configuration files. Declaring a new element or component 
in the configuration file must adhere to the following 
scheme: 

 structure.stringID className 

where: 

1. structure is protocol, init, or control 

2. stringID is the name assigned to the element. This 
name is referenced by other elements in the file. 

3. className  is the name of the object class. This class 
should be of type Protocol or Control. 

 If an element belongs to a class that requires parameters 
to be inputted, this must be done after the element is declared. 
Following element declaration, parameters can be defined as 
follows: 

structure.stringID.parameterName VALUE 

where: 

1. parameterName is the name of the parameter defined 
within the class file 

2. VALUE holds the value given for the corresponding 
parameter. 

PeerSim offers two types of simulations: cycle-driven and 
event-driven. In cycle-driven mode, simulations progress at 
fixed discrete timesteps or cycles. Meanwhile, event-driven 
mode offers a more realistic and flexible progression of time. 
Events in event-driven simulation can be scheduled, in 
chronological order, to occur at any specific points in 
simulated time, without needing to adhere to regular, periodic 
timesteps. This mechanism allows the user to create dynamic 
and unpredictable systems, which is exactly what was needed 
for this study. In the context of IntelliAntSearch, we used the 
event-driven simulation engine, which allowed us to simulate 
asynchronous events as well as dropped packets and message 
delays to try to be as close as possible to real P2P networks. 
In addition, it allowed us to dynamize the network even more. 

 In addition to base PeerSim package, our implementation 
also utilizes the “iSearch” extension created by Gian Paolo 
Jesi and Simon Patarin from University of Bologna [9]. The 
iSearch extension provides additional services for building 
search protocols and collecting information from simulations. 
Search algorithms can be more conveniently implemented and 
standardized by extending their SearchProtocol class, which 
is connected to a SearchObserver class that collects statistics 
on the simulation. While iSearch is purely cycle-driven, we 
have modified its capabilities to accommodate event-driven 
simulations as well.  

B. Equations 

     In our IntelliAntSearch model, we use a pheromone 
update equation derived from AntP2PR [1], which is what the 
algorithm uses for adjusting the routing paths based on past 
successes. The equation used is: 

Δ(𝑞ℎ)  =  𝑞1 ⋅ 𝑒
𝑞ℎ𝑞2 (1) 

1. Δ(qh): Represents the change in pheromone level 
associated with a given routing path. This update is 
applied to the pheromone values stored for each path 
in the network, influencing future decisions on 
which paths to prioritize. 

2. q1: A scaling factor that adjusts the magnitude of the 
pheromone update. This parameter can be 
configured to increase or decrease the pheromone 
increment, thus affecting the aggressiveness of the 
routing updates. A higher q1 leads to more 
pronounced changes in pheromone levels, making 
successful routes more attractive more quickly. 

3. qh: Represents the total number of successful query 
hits for a particular path. This metric serves as a 
feedback mechanism, indicating the effectiveness of 
the path based on past interactions. 

4. q2: Modulates the influence of qh on the pheromone 
update. It acts as an exponent in the pheromone 
update equation, determining how rapidly the 
pheromone value increases with each additional 
query hit. A higher q2 value results in more dramatic 
increases in pheromone levels with successful 
queries, enhancing the positive feedback loop. 

 

C. Enhancing Query Efficiency with LSTM 

In our proposed solution, we leverage Long Short-Term 
Memory (LSTM) neural networks to enhance the efficiency 
and accuracy of query handling in unstructured peer-to-peer 
(P2P) network environments. LSTM networks are a type of 
recurrent neural network (RNN) capable of learning order 
dependence in sequence prediction problems. This feature 
makes LSTMs ideal for predicting time-series data or any 
data where the current state is dependent on previous states. 
In the context of P2P networks, LSTMs have the potential to 
predict network conditions based on historical data, which 
includes traffic patterns, query success rates, and network 
load. 

In our IntelliAntSearch model, the LSTM is trained to 
predict optimal values for q1, q2, and the pheromone 
thresholds (high and low bounds), based on the evolving state 
of the network. This prediction is crucial for dynamically 
adjusting the parameters used in the pheromone update 
equation (1), ensuring that the search strategy remains 
optimal despite changes in network traffic and topology. 

The LSTM model processes historical network 
performance data, learning patterns that lead to successful 
query resolutions and low network overload. This training 
allows the model to forecast the parameter values that are 
likely to achieve a balance between high success rates and 
manageable network load. For example, if the model detects 
an increasing trend in query success but also a rising network 
load, it would increase q1 to boost success further while 
adjusting the high and low bounds to manage the load. 

By integrating LSTM into our routing algorithm, we 
ensure that the search protocol is both reactive and predictive, 
adapting to anticipated changes in network conditions before 



   

 

   

 

they can impact performance adversely. We aim for our 
approach to predict query traffic and optimize data routing 
methods, thereby reducing latency and improving 
throughput. 

For training, we utilized Python with TensorFlow as it 
allowed us to efficiently train our model. 

 

IV. EVALUATION METHODOLOGY 

For evaluating how IntelliAntSearch performed with 
respect to other models we’ve discussed earlier, we have 
chosen to focus on two primary metrics: Success Rate and 
Network Overload. These metrics were selected not only for 
their direct relevance to the performance of search algorithms 
in peer-to-peer (P2P) networks but also to highlight the 
inherent trade-offs that typically arise between them. 

1. Success Rate 

  Success Rate is defined as the ratio of 
successful query responses to the total number of 
queries initiated within the network. This metric 
measures the effectiveness of the search algorithm in 
locating and retrieving the desired information across 
the network. A higher success rate indicates a more 
efficient and reliable search process, where queries 
are more likely to find the required resources within 
fewer hops or less time. The success rate is 
particularly crucial in unstructured P2P networks, 
where the distribution of resources is not 
predetermined and can vary dynamically. 

2. Network Overload  

  Network Overload, quantified through the 
Number of Messages metric, refers to the total 
volume of network traffic generated by the search 
algorithm during the execution of queries. This 
includes all messages sent for initiating queries, 
routing information, and returning results. High 
network overload can lead to congestion, increased 
latency, and higher computational and bandwidth 
consumption, which can affect the network's overall 
performance and scalability. The goal is to minimize 
this metric to reduce the burden on the network while 
maintaining or improving the success rate. 

Improving the success rate often requires more 
comprehensive search strategies, which can increase the 
number of messages transmitted and hence the network load. 
Conversely, strategies designed to minimize network traffic 
may reduce the scope or depth of the search, potentially 
lowering the success rate. Effective search algorithms need to 
balance these metrics to optimize both resource discovery and 
network utilization. This balance ensures that the network 
remains scalable and efficient, even as the number of nodes 
and the volume of queries increase. 

 

V. TECHNICAL RESULTS AND ANALYSIS 

To analyze our simulations and approach, we ran 
three experiments in PeerSIM, all of which evaluated success 
rates (% of hit rate) and number of messages seen in the 
network (number of queries). For all, we used similar 
configurations with a simulated network delay between 20ms 
and 200ms, and a drop rate of 30% for packets. Each node in 
the network can have between 10 and 40 neighbors and all 

protocols had a TTL (time to live) of 3, meaning max number 

of hops. 

1. In the first experiment, the already existing protocols 
are evaluated to validate our implementation and the 
simulator setup. According to the result of the 
experiment which is shown in Fig. 1 and Fig. 2, we 
conclude that our implementation matches the results 
of the other implementations by Loukos [1] and 
Ahmadi A [4] with DLAntP2P exceeding all other 
protocols in success rate and then AntP2PR and lastly 
K-walker. However, we introduced normal flooding 
and compared it to given protocols. 

 

Figure 1. 
Success rates (%) of original protocols 
 

Figure 2. 
Number of queries of original protocols 
 

1. In the second experiment, we evaluated our 
IntelliAntSearch approach to AntP2PR [1] based on 
success rates and the number of queries made in the 
network. According to Fig. 3 and Fig. 4, we can see 
there is a slight improvement in the success rate by 
using our approach to choose the parameters, 
however, the number of queries increased.  

 



   

 

   

 

Figure 3. 
Success rates (%) AntP2PR vs. IntelliAntSearch (AntP2PR) 
 

Figure 4. 
Number of queries AntP2PR vs. IntelliAntSearch 
(AntP2PR) 
 

2. In the third and last experiment, we evaluated 
IntelliAntSearch with DLAnt [4] by letting our 
approach choose the parameters for the given 
protocol. According to the result of the experiment 
which is shown in Fig. 5 and Fig. 6 we can see a 
bigger improvement than experiment 2 with 
AntP2PR in success rates and almost exactly similar 
query count.   

 

Figure 5. 
Success rates (%) DLAnt vs. IntelliAntSearch (DLAnt) 
 

Figure 6. 

Number of queries DLAnt vs. IntelliAntSearch (DLAnt) 

VI. CONCLUSION AND FUTURE WORK 

PeerSIM was difficult to start with, and until we 
found the "iSearch” approach, which helped us understand 
how to implement searching in the simulator, we couldn’t 
really implement the algorithms. The documentation was 
poor, and the software is old, so it was difficult to fully dive 
into creating the simulations and fully understanding the 
process. Moreover, AntP2PR by Loukos [1] and DLAnt by 
Ahmad A. [4] do not cover the simulation environments 
very well, so we had to assume a lot of stuff (drop rate, 
message delay, node initialization with k neighbors).  In 
addition to that, the proposed protocols by the given papers 
ran on a cycle-based engine where it is unrealistic to real-
world event based P2P networks. 

Due to time constraints, we were unable to test 
IntelliAntSearch against other algorithms for different churn 
rates or dynamic conditions. Among the previous methods we 
have surveyed, AntP2PR [1] and SemAnt [2] were evaluated 
on nondynamic networks, thus lacking realism. Furthermore, 
there has yet to be churn rate testing even among methods 
simulated with dynamic networks. In the context of 
unstructured P2P networks, testing search algorithms under 
dynamic conditions is essential as it demonstrates the full 
extent of an algorithm’s effectiveness and viability. By 
subjecting the search techniques to various churn rates, 
including extreme dynamicity, we will be able to reveal the 
limits of their robustness.  
 

VII. WORKLOAD  DISTRIBUTION AMONG TEAM MEMBERS  

Overall: No strict delineation of roles, everyone 
contributed to each other’s “tasks”. 

Abdulaziz –  

• Suggested the 2010 paper we’re extending  

• Contributed papers for the topic  

• Contributed to summarizing Ahmadi et al. 2016 

• Migrating previous implementations (AntP2PR, 
Flooding, K-Walker) to iSearch 

• Random K-Walker (Initial implementation, non-
iSearch) 

• A version of Flooding (non-iSearch) 
Deeksha –  

• Proposed extension to the AntP2PR algorithm using 
time-series analysis 

• Contributed papers for the topic 

• DLAnt (Initial implementation, non-iSearch) 



   

 

   

 

• Visualizations for comparing implementations 

• LSTM implementation 
Karen –  

• Contributed papers for the topic 

• Literature Review for Ant Colony Routing 
algorithms  

• AntP2PR (Initial implementation, non-iSearch) 

• A version of Flooding (non-iSearch) 

• DLAnt (iSearch implementation) 
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