
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

IntelliAntSearch: Machine Learning Enhanced
Reliability and Relevance in Unstructured P2P Networks

Abdulaziz Houtari

Computer Science and Engineering
Michigan State University

East Lansing, USA
houtaria@msu.edu

Deeksha Mohanty

Computer Science and Engineering
Michigan State University

East Lansing, USA
mohant11@msu.edu

Karen Suzue

Computer Science and Engineering
Michigan State University

East Lansing, USA
suzuekar@msu.edu

Abstract— IntelliAntSearch proposes a new addition to

enhancing ant-colony search algorithms within unstructured
peer- to-peer (P2P) networks. Building upon the foundations of
AntP2PR and DLAntP2P, IntelliAntSearch extends the
capabilities of these original algorithms by integrating machine
learning techniques. Specifically, our approach leverages Long
Short-Term Memory (LSTM) networks to dynamically adjust
parameters overlooked in both AntP2PR and its successor,
DLAntP2P. By learning from historical data, LSTM networks
allow IntelliAntSearch to fine-tune parameters related to
pheromone and time-to-live (TTL) updates in real time,
thereby optimizing search strategies adaptively. Results from
simulations on PeerSIM show that IntelliAntSearch, when
adapted on AntP2PR, performs slightly better than the original
algorithm in terms of query success rate, but increases the
message overhead in the network. Meanwhile, IntelliAntSearch
applied to DLAntP2P leads to a greater improvement in
success rate while retaining almost the same query count.
Overall, IntelliAntSearch was largely able to achieve its goal of
enhancing search efficiency, scalability, and adaptability in
search for dynamic P2P environments.

Keywords—unstructured peer-to-peer networks, ant colony, ant
search, time-series analysis, Long Short Term Memory (LSTM),
TTL (Time to Live)

I. INTRODUCTION AND MOTIVATION

 Unstructured peer-to-peer (P2P) networks have gained
significant attention in recent years due to their decentralized
nature, which enables robust sharing and distribution of
resources without the need for centralized servers. Unlike
structured P2P networks, which rely on predefined
organizational structures for efficient data lookup and routing,
unstructured P2P networks offer a more flexible approach,
where peers connect directly to one another without strict
guidelines. However, this flexibility comes with its own set of
challenges and advantages. As unstructured P2P networks
expand to encompass thousands to millions of nodes, they are
accompanied by regular fluctuations in peer availability and
resource distribution. Traditional search algorithms, which
include flooding or random-based techniques, are not scalable
nor adaptable enough to accommodate such dynamicity or
network size. Given this fact, it is crucial to develop novel
search techniques that can flexibly adjust to these changes in
real time. The ability to adapt allows search algorithms to
maintain optimal query efficiency and resource discovery,
thereby simultaneously reducing network load while

increasing query success rate – two variables that are often
thought to be tradeoffs.

 Ant colony algorithms are a class of biologically-inspired
algorithms that promise to offer robustness and adaptability in
changing environments. They are based on the real-life
phenomenon of stigmergy and swarms, in which ants follow
each other’s pheromones to trace the best path to a food
source. As the pheromones accumulate, the most efficient and
shortest paths are reinforced and become more apparent over
time. These principles have been applied to many problems in
Computer Science, including search in unstructured P2P
algorithms as ant colony search does not require the ants to
have global knowledge about the network they are traversing
[5]. Many ant colony search algorithms, or ant-based routing
methods, have been proposed over the years, including
AntSearch [6], SemAnt [5], AntP2PR [1], and DLAntP2P [4],
many of which have shown promising results in improving
both network traffic and query hits when compared to
traditional techniques.

 AntP2PR, first proposed by Loukos et al. in 2010, laid the
foundation for its successor DLAntP2P, which was proposed
by Ahmadi et al. in 2016. Both algorithms were designed to
address the challenge of free-riders in the network and to
minimize the amount of traffic dedicated to resource
discovery. While these algorithms have demonstrated
adaptability and achieved relatively high success rates, they
rely on static parameters manually set for updating pheromone
values of peers and determining the time-to-live of messages.
Such static use of parameters could lead to suboptimal routing
decisions and reduced query efficiency, especially in dynamic
network environments. To harness the overlooked potential
for further dynamicity in these algorithms, IntelliAntSearch
proposes to integrate machine learning techniques into the
original AntP2PR and DLAntP2P algorithms. Specifically,
IntelliAntSearch employs Long Short-Term Memory (LSTM)
networks, which utilize historical data on query successes and
failures to dynamically adapt the aforementioned parameters
in response to real-time network conditions. Within the P2P
network, neighbor selection and thus the movement of virtual,
abstracted “ants” are then drawn on learned patterns from past
data, which should lead to enhanced accuracy and efficiency
in resource discovery. Using simulations conducted on the
platform PeerSIM, our results mostly substantiate this
assertion. IntelliAntSearch, when integrated into AntP2PR,
leads to a slight improvement in query success rate over the
original algorithm. However, this also leads to an increase in
messages generated in the network, therefore increasing

network load. Meanwhile, we see a greater overall
improvement when integrating IntelliAntSearch into
DLAntP2P. Our results show that IntelliAntSearch leads to a
higher success rate than that of the original algorithm, while
still retaining an almost exact query count. Furthermore, this
improvement is greater in comparison to that of the
IntelliAntSearch-integrated AntP2PR algorithm.

 The subsequent sections of this paper are structured as
follows. Section II provides an overview of previous ant
colony algorithms, including AntP2PR and DLAntP2P, as
well as other swarm intelligence-based methods we have
surveyed in preparation for this study. Section III describes the
implementation details of IntelliAntSearch, which includes
background information on the workings of LSTM and the
PeerSim platform. Section IV describes the methodology and
metrics used for testing and evaluating the algorithm against
previous methods such as K-Walker and Flooding. Finally,
section V includes the results of our simulations as well as
their analysis.

II. RELATED WORK

A. Ant Colony Algorithms

Surveying various existing studies, we have explored both
biologically inspired and non-biologically inspired
approaches to querying in unstructured P2P networks while
determining the project’s direction. Biologically inspired
methods, especially ant colony algorithms, are of particular
interest as they demonstrate resilience and flexibility in
changing environmental conditions.

Ant colony algorithms in unstructured P2P networks
typically operate as follows. Initially, virtual “ants”, which are
represented by queries or messages, traverse the network to
search for resources. They can either be released and
forwarded en masse, meaning they are sent out collectively or
in large groups, akin to a flooding-like approach, or be guided
individually through the network like a 1-random walker
algorithm, moving to one neighboring node at a time. “Ants”
make their decision to visit a neighboring node based on the
pheromone value of such node or the edge leading to it.
Pheromone values serve as a form of distributed information
about the quality of paths in the network, where nodes with
higher pheromone values, for example, are more likely to be
visited by the ants. Upon reaching a query hit, the “ants”
communicate their findings back to the initiator of the query,
updating pheromone values of each node or edge along the
successful path in the process. This update reinforces the path
that led to the successful query hit, making it more attractive
for future queries. Over time, the most efficient paths are
reinforced solely through local and indirect communication
among the ants, leading to the emergence of optimized routing
paths in the network.

Within the realm of ant colony algorithms, we have
reviewed SemAnt [5], AntSearch [6], AntP2PR [1], as well as
DLAntP2P and LantP2P [4], which are extensions of the
previous AntP2PR algorithm.

1. SemAnt [5]

 SemAnt was first proposed by Michlmayr
in 2006. An earlier ant colony search algorithm,
SemAnt was specifically developed with
applications for distributed search engines in mind
[5]. Distributed search engines are systems designed
to retrieve and index information from multiple
sources across a network. Users query for documents

using keywords or phrases that describe what they
are looking for. Upon receiving a query, distributed
search engines distribute the query across the
network using various search algorithms.

 SemAnt operates on a few assumptions. In
SemAnt, a controlled vocabulary of keywords are
known as "concepts", and queries are assumed to be
a series of concepts stringed together by a Boolean
OR operator. This means that documents are
retrieved if they are associated with at least one of
the concepts in the query. Furthermore, each concept
is associated with a unique pheromone type. This
requires each peer in the network to maintain a
routing table that records the amount of pheromone
associated with every type, and do so for each edge
leading to its immediate neighbors.

 A “forward ant” is created by an initiator
peer upon receiving a query. The ant travels the
network until it is able to retrieve the document or its
time-to-live (TTL) runs out. As the forward ant
traverses the network, it decides, based on a
probability, whether it wants to explore edges with
lower pheromones, or exploit edges with the
strongest pheromones. Upon reaching a hit, a
“backward ant” is created to bring the document
back to the initiator, updating pheromone values at
each intermediate edge in the process. The strength
of pheromone updates depends on the number of
documents retrieved as well as the length of the path.
This effectively leaves a pheromone trail for future
ants to follow and encourages the formation of short
optimized routing paths. True to real ant colonies,
pheromone trails in SemAnt evaporate over a set
time interval and by a predetermined amount of
pheromones evaporated per time unit.

 While results show that SemAnt
outperforms k-random walk in hit rate and resource
usage, that is, by traversing fewer edges, Michlmayr
did not test SemAnt on a dynamic network, stating
that "a static network topology and document
distribution are assumed" [5, p.4] while intending to
"evaluate and improve the performance of the
algorithm in a dynamic setting" [5, p.4] in a future
study. Furthermore, while pheromones are
implemented with a degree of dynamicity in
SemAnt, there is still potential for adaptive
pheromone trails to limit routing towards leaving
peers [5, p.4].

2. AntSearch [6]

 AntSearch was developed by Wu et al. in
2006. It was proposed as a solution to avoiding free-
riders in the network, which are defined as peers
sharing less than 100 files [6]. Such peers take
advantage of resources in the network but rarely
contribute to it. Therefore, a significant amount of
network traffic can be reduced by preventing
messages from being sent to free-riders. In essence,
AntSearch is a controlled flooding approach.
Through AntSearch, each peer in the network has
knowledge of its own pheromone value as well as
that of its immediate neighbors. Pheromone values in
AntSearch are effectively query hit rates. In
comparison to other ant colony approaches surveyed
for this study, AntSearch follows the ant colony

protocol more loosely. AntSearch operates in two
distinct phases – the “Probe Phase” and the
“Flooding Phase”.

 In the Probe Phase, the query initiator
floods a few neighbors with a small TTL value,
which is recommended to be a TTL of 2. The number
of neighbors are determined using a range of k
values, which denotes the percentage of peers with
the highest pheromones to flood to. The purpose of
this phase is to effectively approximate the number
of results that can be retrieved for a query, as well as
to predict the number of peers needed to reach for
enough results to be obtained. Using the results
obtained from this phase, a suitable k value is then
chosen for the next Flooding Phase. During the
Flooding Phase, the k value is fixed. AntSearch
floods the algorithm towards peers with k% highest
pheromone values in the network until they are all
visited or enough results are retrieved.

 The original study by Wu et al. demonstrate
an average reduction of 50% in network traffic while
still achieving sufficient results and maintaining
comparable search latency to DQ+, an algorithm that
floods to all peers irrespective of their reliability.
While promising, this algorithm has the potential for
further dynamicity using an adaptive k parameter
during the Flooding Phase. Currently, the static k
parameter means that AntSearch floods to the same
proportion of neighbors from every node. By
dynamically adjusting degrees of selectiveness at
different areas of the network, the algorithm will
further reduce network traffic. Furthermore,
AntSearch can also benefit from dynamically
adjusting TTL values.

3. AntP2PR [1]

 AntP2PR, introduced by Loukos et al. in
2011, shares the common objective of mitigating
free-riders in the network and minimizing network
traffic. Its focus lies specifically in decreasing the
traffic allocated for resource discovery, diverting it
instead towards content transfer. Like AntSearch,
peers in AntP2PR know of and utilize the pheromone
values of their immediate neighbors to make their
decisions. However, unlike AntSearch, peers in
AntP2PR do not have information regarding their
own pheromone values, as these values are relative
to those of immediate neighbors. Also similar to
AntSearch is AntP2PR’s use of controlled flooding,
however with varying TTL values determined
dynamically based on pheromones instead.

 Peers in AntP2PR maintain two tables: one
for storing the pheromone values of their immediate
neighbors, and another for recording those
neighbors’ query hits. When a query arrives at a
node, the peer check for matches to its local
repository. If no match occurs, the peer forwards the
query to immediate neighbors whose pheromone
values match a certain condition and if TTL is above
zero. The condition, which involves using low and
high pheromone thresholds predefined by the
researcher, allows the peer to perform a dynamic
query TTL update. The dynamic TTL update process
is as follows: TTL is decremented if the neighbor’s
pheromones are less than the low bound, and is

incremented if higher than the high bound;
otherwise, it remains unchanged. This mechanism
restricts the number of neighbors to which a query
can be forwarded, making it less likely for the query
to travel on suboptimal paths. Meanwhile,
pheromones are updated when a query hit occurs.
The process first involves visiting nodes on the
successful path and incrementing appropriate entries
in their hit count tables. Following an update in their
hit count tables, each node then uses the new query
hit values to update and normalize their pheromone
tables. Alongside to query hit count, two
predetermined parameters q1 and q2 are involved in
determining the strength of these updates.

 Results for AntP2PR demonstrate a typical
tradeoff between network load and query hit or
failure rate, that is, AntP2PR's reduction in the
number of query packets generated comes at the cost
of an increased rate of queries failing to return a
result. Furthermore, while sensitivity analysis for
parameters and pheromone thresholds was
conducted in the original study, these values
nonetheless remain static throughout the search
process and must be manually chosen by the
researcher. This makes AntP2PR difficult to
implement in real-world networks. Additionally,
AntP2PR was simulated on a network with non-
dynamic topology consisting of 200 nodes, which is
contrary to Loukos et al.’s claim that the algorithm
“enables the network to adjust to the dynamic nature
of Peer-to-Peer networks” [1, p.655].

4. DLAntP2P & LAntP2P [4]

 Both DLAntP2P and LAntP2P were
proposed by Ahmadi et al. in 2016 as an extension
and improvement to the previous AntP2PR. Instead
of a controlled flooding approach, DLAntP2P and
LAntP2P employ adaptive decision-making
capabilities to explicitly determine the number of
ants to create and select which neighbor(s) to
forward to. Although DLAntP2P and LAntP2P adopt
the same pheromone and TTL update protocols of
AntP2PR, the pheromones in these algorithms are
also treated as probabilities for selecting ant actions
using learning automata.

 In DLAntP2P, each peer in the network
hosts a variable learning automaton that employs the
P-LRP learning algorithm. Similar to AntP2PR, each
peer maintains a table recording the pheromone
values associated with each of their immediate
neighbors. Specifically, these pheromone values are
assigned to the edges leading to those immediate
neighbors. Initially, when a query is initiated, the
initiator peer broadcasts the query to neighbors with
the highest pheromone values, based on a randomly
generated minimum pheromone threshold “r”.
Following this initial phase, the query or “ant”
progresses through the network one neighbor at a
time, rather than being replicated across several
neighbors. This is accomplished by having the
learning automaton at each peer select the edge with
the highest pheromone value whenever an ant arrives
at it.

 In DLAntP2P, the query initiator doesn't
utilize its learning automaton. Therefore, LAntP2P

proposes an alternative approach to enable all peers
in the network to benefit from adaptive decision-
making. In LAntP2P, each edge leading to a
neighboring node is associated with two actions of
varying probabilities: "creating the ant" and "not
creating an ant". When a query is generated and
cannot be resolved by the initiator, its learning
automaton selects neighbors with high probabilities
for "creating an ant" to forward the query.
Intermediate nodes in LAntP2P function similarly to
that of DLAntP2P, where the ant is replicated to
progress through the network one neighbor at a time.

 Results in the Ahmadi et al. study show that
DLAntP2P and LAntP2P outperform AntP2PR and
k-random walk in both success rate and message
overhead [4]. DLAntP2P performs better than
LAntP2P in generating fewer messages overall, but
also having a higher success rate. In terms of query
hits, AntP2PR trumps both algorithms simply
because it is a controlled flooding approach and visits
more nodes in the network at a time. Although
DLAntP2P and LAntP2P demonstrate significantly
greater adaptiveness and performance compared to
AntP2PR, both algorithms still rely on the same
pheromone and TTL update protocols as the original
algorithm. These protocols continue to utilize static
parameters that remain constant throughout the
querying process and must be manually chosen by
the researcher.

 Overall, several limitations were identified in previous
studies, prompting the development of IntelliAntSearch.
Firstly, SemAnt and AntP2PR were evaluated in experiments
conducted on static networks, which is a significant drawback
due to the unrealistic nature of static network conditions.
Additionally, none of the surveyed algorithms, including
those simulated under dynamic conditions, were tested under
different churn rates to assess their robustness and viability.
Moreover, all of the surveyed algorithms except for SemAnt
utilize static parameters for updating pheromone values and
pheromone-based decision-making throughout the querying
process.

B. Swarm Intelligence Algorithms [7]

In addition to ant colony algorithms, we have also
surveyed two swarm intelligence algorithms based on the
mechanisms of the Physarum Polycephalum Slime Mold and
the Bark Beetle [7]. These algorithms both employ a form of
controlled flooding, similar to that of AntP2PR.

1. The Phyasrum Polycephalum

There are two distinct phases to the Physarum
Polycephalum Slime Mold algorithm: a forward
phase and a backward phase. In summary, the
forward phase occurs when the queries, or agents, are
searching for resources. Once a query is resolved, the
backward phase begins and agents retrace their steps
back to the initiator peer. Similar to AntP2PR, each
peer in the Slime Mold algorithm maintains a routing
table that records flow values, serving as
probabilities for selecting neighboring edges. This
mechanism is meant to mimic how slime molds
dynamically adjust their growth patterns in response
to environmental cues, retracting and extending their
pseudopodia in multiple directions depending on the
concentration of nutrients. Upon a successful query
hit and during the backward phase, the routing tables

of peers on the successful path are retraced and
updated using a delta function (1). In addition to
probability-based decision-making, the Slime Mold
Algorithm allows for agents to revisit peers, unlike
AntP2PR. If an agent during the forward phase has
visited all neighbors of a node, it chooses its next hop
uniformly.

2. Bark Beetles

 The Bark Beetles algorithm works similarly
to the ant colony and slime mold algorithms. In
nature, bark beetles detect and infest weakened trees
through pheromones emitted by other beetles. They
do this in order to reproduce within the tree. Over
time, the aggregation of beetle pheromones on trees
allows beetle swarms to select the most suitable host
for infestation. Adapting this to P2P routing, the
process begins when a source peer initiates a search
query, spawning a configurable number of beetles.
Each beetle is uniquely identified by an identification
number. Within the network, each node maintains a
pheromone matrix, initially empty, which tracks
pheromone concentrations for discovered resources
among neighboring nodes. Several configurable
parameters, such as Time-To-Live (TTL), beetle
count (akin to ant count), and pheromone types, can
be adjusted prior to the querying process by the
experimenter.

 To navigate the network, beetles use a
decision rule, selecting the neighbor with the highest
pheromone concentration. Upon locating the
resource, a beetle disseminates a notification
message throughout the network, conveying
information about the resource. If a beetle's TTL
expires or it visits all neighboring nodes without
finding a resource, it returns to the query initiator.
Additionally, this algorithm offers the flexibility to
prioritize either exploitation or exploration through a
single parameter known as "sufficient pheromone
concentration."

III. PROPOSED WORK AND TECHNICAL APPROACH

A. PeerSIM: Simulating P2P Network Dynamics [8]

To model and evaluate the performance of
IntelliAntSearch, we utilized PeerSIM, a robust P2P network
simulator written in Java [8]. PeerSIM is especially well-
suited for our needs due to its flexibility and the extensible
simulation framework it provides. The platform supports
simulations with a large number of nodes, making it suitable
for testing scalability in networks that may expand
dynamically in size. This simulator has allowed us to construct
an environment that mirrors the complexities of real-world
P2P networks, enabling us to test and refine our LSTM-based
routing algorithm under varied conditions and scenarios.

To implement a search protocol in PeerSim, there are six
types of objects to consider:

1. The Node object, which represents peers in the P2P
network

2. The Protocol object, which defines an operation to be
performed at each node during a timestep

3. The Linkable object, which provides an interface for
other Protocols to access neighboring nodes

4. The Transport object, which is a Protocol responsible
for forwarding queries in the network and simulating
drops or delays

5. The Control object, which can be scheduled for
execution at different points during the simulation,
either to schedule queries, modify the simulation, or
observe and collect statistical data.

6. The Initializer, which is of type Control. They form
the overlay network by instantiating edges between
nodes according to different configurable
mechanisms (for example, random joining)

Simulations in PeerSim can be easily set up using
configuration files. Declaring a new element or component
in the configuration file must adhere to the following
scheme:

 structure.stringID className

where:

1. structure is protocol, init, or control

2. stringID is the name assigned to the element. This
name is referenced by other elements in the file.

3. className is the name of the object class. This class
should be of type Protocol or Control.

 If an element belongs to a class that requires parameters
to be inputted, this must be done after the element is declared.
Following element declaration, parameters can be defined as
follows:

structure.stringID.parameterName VALUE

where:

1. parameterName is the name of the parameter defined
within the class file

2. VALUE holds the value given for the corresponding
parameter.

PeerSim offers two types of simulations: cycle-driven and
event-driven. In cycle-driven mode, simulations progress at
fixed discrete timesteps or cycles. Meanwhile, event-driven
mode offers a more realistic and flexible progression of time.
Events in event-driven simulation can be scheduled, in
chronological order, to occur at any specific points in
simulated time, without needing to adhere to regular, periodic
timesteps. This mechanism allows the user to create dynamic
and unpredictable systems, which is exactly what was needed
for this study. In the context of IntelliAntSearch, we used the
event-driven simulation engine, which allowed us to simulate
asynchronous events as well as dropped packets and message
delays to try to be as close as possible to real P2P networks.
In addition, it allowed us to dynamize the network even more.

 In addition to base PeerSim package, our implementation
also utilizes the “iSearch” extension created by Gian Paolo
Jesi and Simon Patarin from University of Bologna [9]. The
iSearch extension provides additional services for building
search protocols and collecting information from simulations.
Search algorithms can be more conveniently implemented and
standardized by extending their SearchProtocol class, which
is connected to a SearchObserver class that collects statistics
on the simulation. While iSearch is purely cycle-driven, we
have modified its capabilities to accommodate event-driven
simulations as well.

B. Equations

 In our IntelliAntSearch model, we use a pheromone
update equation derived from AntP2PR [1], which is what the
algorithm uses for adjusting the routing paths based on past
successes. The equation used is:

Δ(𝑞ℎ)  =  𝑞1 ⋅ 𝑒
𝑞ℎ𝑞2 (1)

1. Δ(qh): Represents the change in pheromone level
associated with a given routing path. This update is
applied to the pheromone values stored for each path
in the network, influencing future decisions on
which paths to prioritize.

2. q1: A scaling factor that adjusts the magnitude of the
pheromone update. This parameter can be
configured to increase or decrease the pheromone
increment, thus affecting the aggressiveness of the
routing updates. A higher q1 leads to more
pronounced changes in pheromone levels, making
successful routes more attractive more quickly.

3. qh: Represents the total number of successful query
hits for a particular path. This metric serves as a
feedback mechanism, indicating the effectiveness of
the path based on past interactions.

4. q2: Modulates the influence of qh on the pheromone
update. It acts as an exponent in the pheromone
update equation, determining how rapidly the
pheromone value increases with each additional
query hit. A higher q2 value results in more dramatic
increases in pheromone levels with successful
queries, enhancing the positive feedback loop.

C. Enhancing Query Efficiency with LSTM

In our proposed solution, we leverage Long Short-Term
Memory (LSTM) neural networks to enhance the efficiency
and accuracy of query handling in unstructured peer-to-peer
(P2P) network environments. LSTM networks are a type of
recurrent neural network (RNN) capable of learning order
dependence in sequence prediction problems. This feature
makes LSTMs ideal for predicting time-series data or any
data where the current state is dependent on previous states.
In the context of P2P networks, LSTMs have the potential to
predict network conditions based on historical data, which
includes traffic patterns, query success rates, and network
load.

In our IntelliAntSearch model, the LSTM is trained to
predict optimal values for q1, q2, and the pheromone
thresholds (high and low bounds), based on the evolving state
of the network. This prediction is crucial for dynamically
adjusting the parameters used in the pheromone update
equation (1), ensuring that the search strategy remains
optimal despite changes in network traffic and topology.

The LSTM model processes historical network
performance data, learning patterns that lead to successful
query resolutions and low network overload. This training
allows the model to forecast the parameter values that are
likely to achieve a balance between high success rates and
manageable network load. For example, if the model detects
an increasing trend in query success but also a rising network
load, it would increase q1 to boost success further while
adjusting the high and low bounds to manage the load.

By integrating LSTM into our routing algorithm, we
ensure that the search protocol is both reactive and predictive,
adapting to anticipated changes in network conditions before

they can impact performance adversely. We aim for our
approach to predict query traffic and optimize data routing
methods, thereby reducing latency and improving
throughput.

For training, we utilized Python with TensorFlow as it
allowed us to efficiently train our model.

IV. EVALUATION METHODOLOGY

For evaluating how IntelliAntSearch performed with
respect to other models we’ve discussed earlier, we have
chosen to focus on two primary metrics: Success Rate and
Network Overload. These metrics were selected not only for
their direct relevance to the performance of search algorithms
in peer-to-peer (P2P) networks but also to highlight the
inherent trade-offs that typically arise between them.

1. Success Rate

 Success Rate is defined as the ratio of
successful query responses to the total number of
queries initiated within the network. This metric
measures the effectiveness of the search algorithm in
locating and retrieving the desired information across
the network. A higher success rate indicates a more
efficient and reliable search process, where queries
are more likely to find the required resources within
fewer hops or less time. The success rate is
particularly crucial in unstructured P2P networks,
where the distribution of resources is not
predetermined and can vary dynamically.

2. Network Overload

 Network Overload, quantified through the
Number of Messages metric, refers to the total
volume of network traffic generated by the search
algorithm during the execution of queries. This
includes all messages sent for initiating queries,
routing information, and returning results. High
network overload can lead to congestion, increased
latency, and higher computational and bandwidth
consumption, which can affect the network's overall
performance and scalability. The goal is to minimize
this metric to reduce the burden on the network while
maintaining or improving the success rate.

Improving the success rate often requires more
comprehensive search strategies, which can increase the
number of messages transmitted and hence the network load.
Conversely, strategies designed to minimize network traffic
may reduce the scope or depth of the search, potentially
lowering the success rate. Effective search algorithms need to
balance these metrics to optimize both resource discovery and
network utilization. This balance ensures that the network
remains scalable and efficient, even as the number of nodes
and the volume of queries increase.

V. TECHNICAL RESULTS AND ANALYSIS

To analyze our simulations and approach, we ran
three experiments in PeerSIM, all of which evaluated success
rates (% of hit rate) and number of messages seen in the
network (number of queries). For all, we used similar
configurations with a simulated network delay between 20ms
and 200ms, and a drop rate of 30% for packets. Each node in
the network can have between 10 and 40 neighbors and all

protocols had a TTL (time to live) of 3, meaning max number

of hops.

1. In the first experiment, the already existing protocols
are evaluated to validate our implementation and the
simulator setup. According to the result of the
experiment which is shown in Fig. 1 and Fig. 2, we
conclude that our implementation matches the results
of the other implementations by Loukos [1] and
Ahmadi A [4] with DLAntP2P exceeding all other
protocols in success rate and then AntP2PR and lastly
K-walker. However, we introduced normal flooding
and compared it to given protocols.

Figure 1.
Success rates (%) of original protocols

Figure 2.
Number of queries of original protocols

1. In the second experiment, we evaluated our
IntelliAntSearch approach to AntP2PR [1] based on
success rates and the number of queries made in the
network. According to Fig. 3 and Fig. 4, we can see
there is a slight improvement in the success rate by
using our approach to choose the parameters,
however, the number of queries increased.

Figure 3.
Success rates (%) AntP2PR vs. IntelliAntSearch (AntP2PR)

Figure 4.
Number of queries AntP2PR vs. IntelliAntSearch
(AntP2PR)

2. In the third and last experiment, we evaluated
IntelliAntSearch with DLAnt [4] by letting our
approach choose the parameters for the given
protocol. According to the result of the experiment
which is shown in Fig. 5 and Fig. 6 we can see a
bigger improvement than experiment 2 with
AntP2PR in success rates and almost exactly similar
query count.

Figure 5.
Success rates (%) DLAnt vs. IntelliAntSearch (DLAnt)

Figure 6.

Number of queries DLAnt vs. IntelliAntSearch (DLAnt)

VI. CONCLUSION AND FUTURE WORK

PeerSIM was difficult to start with, and until we
found the "iSearch” approach, which helped us understand
how to implement searching in the simulator, we couldn’t
really implement the algorithms. The documentation was
poor, and the software is old, so it was difficult to fully dive
into creating the simulations and fully understanding the
process. Moreover, AntP2PR by Loukos [1] and DLAnt by
Ahmad A. [4] do not cover the simulation environments
very well, so we had to assume a lot of stuff (drop rate,
message delay, node initialization with k neighbors). In
addition to that, the proposed protocols by the given papers
ran on a cycle-based engine where it is unrealistic to real-
world event based P2P networks.

Due to time constraints, we were unable to test
IntelliAntSearch against other algorithms for different churn
rates or dynamic conditions. Among the previous methods we
have surveyed, AntP2PR [1] and SemAnt [2] were evaluated
on nondynamic networks, thus lacking realism. Furthermore,
there has yet to be churn rate testing even among methods
simulated with dynamic networks. In the context of
unstructured P2P networks, testing search algorithms under
dynamic conditions is essential as it demonstrates the full
extent of an algorithm’s effectiveness and viability. By
subjecting the search techniques to various churn rates,
including extreme dynamicity, we will be able to reveal the
limits of their robustness.

VII. WORKLOAD DISTRIBUTION AMONG TEAM MEMBERS

Overall: No strict delineation of roles, everyone
contributed to each other’s “tasks”.

Abdulaziz –

• Suggested the 2010 paper we’re extending

• Contributed papers for the topic

• Contributed to summarizing Ahmadi et al. 2016

• Migrating previous implementations (AntP2PR,
Flooding, K-Walker) to iSearch

• Random K-Walker (Initial implementation, non-
iSearch)

• A version of Flooding (non-iSearch)
Deeksha –

• Proposed extension to the AntP2PR algorithm using
time-series analysis

• Contributed papers for the topic

• DLAnt (Initial implementation, non-iSearch)

• Visualizations for comparing implementations

• LSTM implementation
Karen –

• Contributed papers for the topic

• Literature Review for Ant Colony Routing
algorithms

• AntP2PR (Initial implementation, non-iSearch)

• A version of Flooding (non-iSearch)

• DLAnt (iSearch implementation)

REFERENCES

[1] Loukos, F., Karatza, H., Mavromoustakis, C. (2010). AntP2PR: An ant
intelligence inspired routing scheme for Peer-to-Peer networks.
Simulation Modelling Practice and Theory.
DOI:10.1016/j.simpat.2010.10.004

[2] Reyes, L.C., Santillán, C.G., Lam, M.A., Schaeffer, S.E., López, T.T.,
Izaguirre, R.O., & HéctorJ.Fraire, H.(2009). NAS Algorithm for
Semantic Query Routing Systems in Complex Networks. International
Symposium on Distributed Computing and Artificial Intelligence.
DOI:10.1007/978-3-540-85863-8_34

[3] Toyoda F., Sakumot, Y., Ohsaki H.(2020). Proposal of an Efficient
Blind Search Utilizing the Rendezvous of Random Walk Agents.
Conference: 2020 IEEE 44th Annual Computers, Software, and
Applications Conference (COMPSAC).
DOI:10.1109/COMPSAC48688.2020.0-192

[4] Ahmadi A., Meybodi M., Saghiri A. (2016). Adaptive search in
unstructured peer-to-peer networks based on ant colony and Learning
Automata. Computer Networks, Conference: 2016 Artificial
Intelligence and Robotics (IRANOPEN).
DOI:10.1109/RIOS.2016.7529503

[5] Michlmayr E., "Ant Algorithms for Search in Unstructured Peer-to-
Peer Networks," 22nd International Conference on Data Engineering
Workshops (ICDEW'06), Atlanta, GA, USA, 2006, pp. x142-x142,
DOI: 10.1109/ICDEW.2006.29

[6] Yang K., Wu, C., Ho J. (2006). AntSearch: An Ant Search Algorithm
in Unstructured Peer-to-Peer Networks. Proceedings - International
Symposium on Computers and Communications.
DOI:10.1093/ietcom/e89-b.9.2300

[7] V. Šešum-Čavić, E. Kühn, L. Fleischhacker (2020). Efficient Search
and Lookup in Unstructured P2P Overlay Networks Inspired by Swarm
Intelligence. IEEE Transactions on Emerging Topics in Computational
Intelligence. DOI:10.1109/TETCI.2019.2951813

[8] A. Montresor and M. Jelasity, "PeerSim: A scalable P2P simulator,"
2009 IEEE Ninth International Conference on Peer-to-Peer
Computing, Seattle, WA, USA, 2009, pp. 99-100, DOI:
10.1109/P2P.2009.5284506

[9] Jesi, G. P., & Patarin, S. (24AD). Search Framework and algorithms
on peersim.
http://www.cs.unibo.it/~babaoglu/courses/csns/resources/tutorials/pee
rsim3.pdf

https://www.sciencedirect.com/science/article/abs/pii/S1569190X10002042?via%3Dihub
https://ieeexplore.ieee.org/document/8910415
https://ieeexplore.ieee.org/document/9202426
https://ieeexplore-ieee-org.proxy2.cl.msu.edu/document/7529503
https://ieeexplore.ieee.org/document/1623938
https://ieeexplore-ieee-org.proxy2.cl.msu.edu/document/1691065
https://ieeexplore.ieee.org/document/8910415
https://ieeexplore-ieee-org.proxy2.cl.msu.edu/document/5284506
https://ieeexplore-ieee-org.proxy2.cl.msu.edu/document/5284506
http://www.cs.unibo.it/~babaoglu/courses/csns/resources/tutorials/peersim3.pdf
http://www.cs.unibo.it/~babaoglu/courses/csns/resources/tutorials/peersim3.pdf

	I. Introduction and motivation
	II. Related work
	A. Ant Colony Algorithms
	B. Swarm Intelligence Algorithms [7]

	III. Proposed work and technical approach
	A. PeerSIM: Simulating P2P Network Dynamics [8]
	B. Equations
	C. Enhancing Query Efficiency with LSTM

	IV. Evaluation methodology
	V. Technical results and analysis
	VI. Conclusion and future work
	VII. Workload distribution among team members
	References

