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1 Introduction

The Vehicle Routing Problem (VRP) is a fundamental optimization challenge
in logistics, where the goal is to determine the optimal set of routes for a fleet
of vehicles to deliver goods to customers while minimizing costs and meeting
constraints such as vehicle capacity and time windows. VRP is classified as
an NP-hard problem, meaning the solution space grows exponentially with the
number of locations, making exact methods impractical for large instances. This
project leverages Genetic Algorithms (GAs) to address the VRP due to their
flexibility in handling large search spaces and complex constraints.

In this work, we experimented with various configurations of GAs, including
multi-objective and single-objective setups, with and without local optimization
(2-opt) to evaluate their performance on solving VRP instances. Our goal was
to minimize the total distance traveled while adhering to capacity constraints
and optimizing vehicle usage.

2 Related Works

Several studies have applied Genetic Algorithms (GAs) to the Vehicle Routing
Problem (VRP), highlighting their adaptability and efficiency in solving complex
logistics problems. Xin et al. [4] demonstrated GA’s effectiveness in logistics
distribution route optimization. Ibrahim et al. [2] proposed optimized GA
operators for VRPs with time windows, emphasizing improvements in crossover
and mutation. Surekha and Sumathi 3] addressed multi-depot VRP challenges
using GA, while Agrawal et al. [1] applied GA to perishable product routing
under quality and time constraints. Zhang et al. [5] explored cold chain logistics
using an improved GA to meet time-critical delivery requirements. These works
collectively underscore GA’s suitability for solving VRP variants, inspiring our
methodology.



3 Methodology

3.1 Problem Setup
The VRP is set up in a simulated environment, where:

1. Customer locations are clustered, ensuring spatial distribution that mimics
real-world delivery locations.

2. Each customer has a demand, and the fleet of vehicles has defined capacity
limits.

3. The depot is centrally located, and routes are optimized to minimize travel
distance and satisfy capacity and vehicle constraints.

The algorithm divides the VRP into several clusters, each representing a

region with unique customer locations. demonstrates the initial setup,
showing clusters with customer locations, cluster centers, and the depot.
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Figure 1: Problem setup example with Depot in the center and clustered cus-
tomers.



3.2 GA Implementation
3.2.1 Chromosome Representation

Each chromosome encodes customer visits and route delimiters to distinguish
different vehicle routes. This representation allows flexibility in assigning cus-
tomers to vehicles.

Figure 2: This represent one vehicle serving customers 2 and 3 and then coming
back to the depot, and another vehicle serving 4, 5, and 1 and coming back to
the depot.

3.2.2 Fitness Evaluation

For the multi-objective GA, the fitness function aims to minimize travel dis-
tance, capacity per vehicle, and number of vehicles used. Whereas in the single-
objective GA, the fitness functions mainly aims to minimize travel distance and
penalizing if constraints are violated.

3.2.3 Genetic Operators

e Selection: NSGA-II is used for multi-objective optimization, while tour-
nament selection (size = 3) is used for single-objective optimization.

e Crossover: Routes are exchanged between parents while ensuring all
customers are served.

e Mutation: Customers are swapped within or across routes to explore
new solutions.

Figure 3: Crossover operator (before repairing).
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(a) Intra-route mutation.

(b) Inter-router mutation.

Figure 4: Mutation operator.

3.2.4 Repair Mechanism

A repair function redistributes excess demand among vehicles to adhere to ca-
pacity constraints. If a route becomes infeasible, customers are reassigned to
new or less utilized routes.

2 3 1 4 5 1 =1 6 7
5 10 5 10 5 2 8
(. - J (. - J [ - J

Figure 5: Repair mechanism example with vehicle capacity=15 and maximum
number of vehicles=3

3.2.5 Local Optimization

Every 10 generations, the top 5 individuals undergo the 2-opt algorithm to
refine their routes. This step reduces overlapping routes and improves overall
efficiency.
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Figure 6: Lifecycle of a GA with local optimization.

4 Experiments

We implemented and evaluated the following configurations:
1. Multi-objective GA.
2. Constrained single-objective GA.
3. Pure 2-opt optimization.
4. Single-objective GA combined with 2-opt optimization.
Key GA parameters:

e Population size: 300.



e Generations: 500.

e Crossover rate: 70%.

e Mutation rate: 10%.
VRP parameters and setup:

e Grid size: 1000x1000.
e Number of locations: 50.
e Maximum vehicles: 10.

e Vehicle capacity: 50.

Distance calculation: Euclidean.

5 Results and Analysis

Location demands: Gaussian distribution.

Approach Min Distance | Vehicles Used
Multi-Objective GA 17,729 6
Constrained Single-Objective GA 9,182 5
2-Opt 13,463 5
Constrained Single-Objective GA + 2-Opt 8,401 5

Table 1: Results of Different Approaches for Vehicle Routing Problem

5.1 Multi-Objective GA
5.1.1 Trade-offs and Pareto Front

The multi-objective GA demonstrates the trade-offs between minimizing total
distance, reducing capacity violations, and minimizing the number of vehicles
used. The Pareto front visualization reveals that while the algorithm success-
fully generates diverse solutions, many of these solutions emphasize reducing
distance but at the cost of increasing vehicle usage which can be seen in

fure 7]

5.1.2 Distance vs. Vehicles Used

The evolution of fitness over generations indicates a gradual decrease in total
distance. However, the multi-objective focus creates a conflict between opti-
mizing distance and minimizing the number of vehicles, leading to an uneven
utilization of the fleet as we can see in
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Figure 7: Pareto front of total distance, vehicles used, and capacity violations.

Evolution of Fitness Over Generations
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Figure 8: Evolution of fitness over generations in the multi-objective GA.

5.1.3 Route Clustering

The resulting routes show poor geographical clustering. Vehicles are assigned

to customers scattered across clusters, resulting in overlapping paths.

This

inefficiency highlights the algorithm’s struggle to balance multiple objectives



effectively. Furthermore, the repair function, while maintaining capacity con-
straints, may limit the algorithm’s ability to explore better configurations by
overly distributing customers. Such result can be seen in

Pareto Front Routes Visualization
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Figure 9: Multi-Objective GA best solution for minimal distance traveled.

5.2 Constrained Single-Objective GA
5.2.1 Focused Optimization

The single-objective GA significantly reduces travel distance by focusing solely
on distance minimization and treating capacity and fleet size as strict con-
straints. This approach eliminates the conflict between objectives, enabling the
algorithm to converge faster to optimal solutions.

5.2.2 Geographical Clustering and Routes

Routes are more localized and tightly clustered, which reduces overlap and un-
necessary travel. The use of a repair function ensures that capacity constraints
are always met without sacrificing the primary objective. This clustering be-
havior not only improves route efficiency but also aligns with real-world delivery
expectations where vehicles typically serve well-defined areas. This can be seen

in |Figure 11
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Figure 10: Single-Objective GA fitness evolution over generations.

Best Vehicle Routes
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Figure 11: Single-Objective GA best solution for minimal distance traveled.

5.2.3 Performance Gains

Compared to the multi-objective GA, this approach achieves better results in
terms of distance and fleet utilization, reflecting the advantage of focusing on a
single well-defined goal.



5.3 2-Opt Only
5.3.1 Distance Reduction

The 2-opt local optimization algorithm successfully reduces travel distance by
iteratively improving existing routes. However, it lacks the adaptability of GA in
redistributing customers or generating entirely new routes, limiting its potential
for large-scale optimization.

5.3.2 Route Overlap

The absence of a global search mechanism results in routes with overlapping
paths and poor vehicle utilization. The improvement in travel distance is modest
compared to the single-objective GA, highlighting 2-opt’s dependency on good
initial solutions.

Optimized Two-Opt Routes
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Figure 12: 2-Opt only solution.

5.3.3 Applicability

While effective for refining routes, 2-opt alone cannot address capacity viola-
tions or optimize customer assignments, making it less versatile than GA-based
approaches.
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5.4 Constrained Single-Objective GA + 2-Opt
5.4.1 Best-Performing Approach

This hybrid approach combines the strengths of GA and 2-opt, leveraging GA
for global exploration and 2-opt for local optimization. The result is the lowest
travel distance across all approaches (8,401 units), with efficient utilization of
the available vehicles.

5.4.2 Improved Clustering

The combination of global and local optimization produces well-clustered routes,
reducing overlap and unnecessary travel. The use of 2-opt at regular intervals
helps refine the solutions generated by GA, ensuring that local improvements
are consistently incorporated.

5.4.3 Flexibility

By treating capacity and fleet size as strict constraints, this approach avoids
the trade-offs seen in multi-objective optimization. The addition of 2-opt en-
sures that the algorithm doesn’t settle for suboptimal solutions, addressing both
global and local aspects of the problem.

Best Vehicle Routes

e Customers
3 @ Depot
— wehicle 1
vehicle 2
vehicle 3
00 A Vehicle 4
[ wvehicle 5

Y Coordinate

100 200 300 400 500 600 700 800
X Coordinate

Figure 13: Single-Objective GA + 2-opt local search best solution for minimal
distance traveled.
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6

Conclusion

This project demonstrates the effectiveness of Genetic Algorithms in solving the
Vehicle Routing Problem. Key findings include:

e Incorporating local optimization (2-opt) significantly improves solution
quality.

e Treating capacity and vehicle constraints as hard constraints, rather than
objectives, enhances route clustering and minimizes distance.

e Multi-objective optimization provides insights into trade-offs but may lead
to suboptimal solutions for practical applications.

Future work will focus on integrating time-window constraints and expanding
the VRP setup to include real-world road networks.
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