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Abstract

We present the progress of the implementation of our
BrainSegNet, a framework for brain tumor classification
and segmentation leveraging DCGANs for data augmenta-
tion, U-Net as a baseline segmentation model, and CLIP-
enhanced U-Net and ViT models for improved performance.
Thus far, we have implemented baseline models, trained on
the BraTS 2020 dataset, and achieved promising results for
segmentation using Dice coefficient and IoU metrics. Chal-
lenges, such as class imbalance and computational con-
straints, are being addressed, with planned refinements in-
cluding CRF post-processing, gradient-based boundary re-
finement, and further hyperparameter tuning.

1. Introduction

Brain tumor segmentation is a critical step in medical
imaging, enabling accurate diagnosis and treatment plan-
ning. However, challenges such as limited annotated data
and class imbalance make it difficult to train robust mod-
els for this task. To address these challenges, we have fo-
cused on implementing and evaluating existing state-of-the-
art models, including U-Net, CLIP-enhanced U-Net, Vi-
sion Transformers (ViT), and SegNet, using the BraTS 2020
dataset.

Our goal is to benchmark these architectures for segmen-
tation accuracy and classification performance while ex-
ploring complementary techniques such as DCGAN-based
data augmentation and Conditional Random Field (CRF)
post-processing. By incorporating diverse preprocessing
methods and evaluation metrics like Dice coefficient and
IoU, we aim to understand the strengths and limitations
of these models. Our progress so far demonstrates the ef-
fectiveness of baseline approaches while identifying areas
for improvement, such as refining boundary precision, ad-
dressing class imbalance, and optimizing computational ef-
ficiency.

2. Experiments

We used PyTorch [8] for implementing and experiment-
ing our models.

2.1. Segmentation

For all segmentation models, we used a weighted com-
bined loss function which incorporated Dice Loss and
BCEWithLogitsLoss. Due to computational limitations,
training utilized different batch sizes for each model based
on available resources at the time. For the most part, we
used a batch size of 64 and trained our models for 5-20
epochs.

We used the Dice coefficient as the primary metric
to evaluate the model’s performance, as it measures the
overlap between predicted and ground truth segmentation
masks. The Dice coefficient is particularly suitable for med-
ical image segmentation tasks, where it effectively captures
both false positives and false negatives.

The experiments utilized the BraTS dataset [7] [3] [1]
[2] [4], a widely used benchmark for brain tumor segmen-
tation. The dataset contains MRI volumes, each consisting
of 155 slices. For this model, each slice was treated as an
individual sample and fed into the model separately. We fo-
cused on the T1CE and FLAIR modalities for input from
the dataset.

Preprocessing steps included normalizing each image
channel to zero mean and unit variance for consistent input
scaling. All images and masks were resized to 160× 160 to
standardize input dimensions across the dataset. Finally, the
dataset was split into training (80%) and test (20%) subsets.

2.1.1 Baseline Segmentation with U-Net

As a baseline, we implemented a U-Net architecture for
the segmentation task [10]. The U-Net model is an
encoder-decoder architecture with skip connections that ef-
fectively combine spatial and semantic information. The
encoder extracts multi-scale features through successive
down-sampling, while the decoder reconstructs these fea-



tures to produce pixel-wise segmentation masks via up-
sampling. Skip connections directly pass features from the
encoder to the decoder at corresponding levels, preserving
fine-grained spatial details that might otherwise be lost.

2.1.2 SegNet

To further explore segmentation models, we implemented
SegNet, a fully convolutional encoder-decoder architecture
originally designed for semantic segmentation tasks. Seg-
Net leverages pooling indices during the decoding stage,
enabling efficient reconstruction of high-resolution feature
maps. This makes it suitable for brain tumor segmentation,
where precise boundary delineation is critical.

The SegNet architecture consists of an encoder-decoder
framework:

1. Encoder: The encoder comprises convolutional lay-
ers followed by max-pooling operations. Pooling in-
dices are saved during down-sampling to guide the de-
coder during up-sampling. The encoder progressively
extracts high-level spatial features while reducing res-
olution.

2. Decoder: The decoder reconstructs the input spatial
resolution using max-unpooling operations guided by
pooling indices from the encoder. It employs convolu-
tional layers to refine the upsampled feature maps.

3. Output: The final output is a pixel-wise segmentation
map with raw logits corresponding to the three target
classes.

2.1.3 CLIP-Based Encoder with U-Net Decoder Imple-
mentation

We integrated a CLIP-based ViT-B/32 encoder [9] to lever-
age large-scale pretrained features for MRI brain tumor seg-
mentation. CLIP’s first convolutional layer was adapted to
accept two MRI modalities (T1CE and FLAIR) by averag-
ing and replicating the pretrained RGB weights.

1. Encoder: We retained the class token, entire trans-
former stack, and dynamically resized positional em-
beddings to match the new input resolution. After pro-
cessing, the class token was removed, and the remain-
ing embeddings were reshaped into a spatial feature
map enriched with pretrained semantic context.

2. Decoder: A U-Net-inspired decoder without skip con-
nections was used, as CLIP does not produce interme-
diate feature maps. A series of transpose and stan-
dard convolutions with ReLU reconstructed a high-
resolution segmentation mask, which was then inter-
polated to the desired output size.

We trained the model using AdamW at 1 × 10−4 with
limited batches per epoch and restricted validation due to
computational constraints. Despite these limitations, the
CLIP-enhanced encoder and streamlined decoder showed
promising potential in harnessing pretrained contextual fea-
tures for brain tumor segmentation.

2.1.4 DeepLabV3

DeepLabV3 [5] employs atrous (dilated) convolutions and
Atrous Spatial Pyramid Pooling (ASPP) to capture multi-
scale context without repeatedly downsampling. This ap-
proach inherently balances local detail with global seman-
tics, making it well-suited for segmenting irregular tumor
regions in MRI scans. The model consists of the following:

• Backbone: A pre-trained ResNet-50 backbone ex-
tracts feature maps at various resolutions.

• ASPP Module: Parallel atrous convolutions at differ-
ent dilation rates aggregate multi-scale features.

2.2. DCGAN for Tumor Image Generation and Seg-
mentation

To further enhance our experimentation, we imple-
mented a Deep Convolutional Generative Adversarial Net-
work (DCGAN) for generating synthetic MRI brain tumor
images. The goal was to augment the dataset with realistic
tumor images and explore how these synthetic samples can
aid in segmentation tasks.

2.2.1 Model Architecture

The DCGAN comprises two primary components:

• Generator: The generator network maps a 100-
dimensional latent vector sampled from a uniform dis-
tribution to a 256×256×3 synthetic MRI image. The
architecture includes:

– Dense layers followed by reshaping to an initial
spatial resolution.

– Multiple transpose convolution layers with ReLU
activation, progressively upsampling to the target
image size.

– A final transpose convolution layer with a tanh
activation for output normalization.

• Discriminator: The discriminator evaluates whether
an input image is real or generated. The architecture
consists of:

– Convolutional layers with Leaky ReLU activa-
tions for feature extraction.

– Dropout layers to prevent overfitting.



– A fully connected layer with sigmoid activation
for binary classification (real or fake).

2.2.2 Training Methodology

• The DCGAN was trained using adversarial loss, where
the generator attempts to maximize the discriminator’s
error, and the discriminator aims to minimize classi-
fication error. This interplay ensures realistic image
synthesis.

• Training data was preprocessed by normalizing pixel
intensities to the range [−1, 1] and resizing images to
256× 256.

• We used the Adam optimizer for both the generator
and discriminator, with learning rates of 0.0002 and
β1 set to 0.5.

2.2.3 Experiments and Observations

• We generated synthetic images resembling the tumor
and non-tumor regions in the BraTS dataset. Visual in-
spection confirmed that the generator effectively cap-
tured global structures but struggled with fine details
in complex regions.

2.3. Classification with Vision Transformer (ViT)

We also implemented a Vision Transformer (ViT)-based
model to classify brain tumor images into four categories.

2.3.1 Model Architecture

• Patch Embedding: Instead of directly processing the
entire image, ViT divides the input image into fixed-
size patches, flattens them, and linearly projects them
into embeddings. These embeddings, along with posi-
tional encodings to retain spatial information, form the
input sequence for the Transformer.

• Transformer Encoder: The core architecture uses a
stack of Transformer encoder layers. Each layer com-
prises Multi-Head Self-Attention (to capture relation-
ships between patches) and Feed-Forward Neural Net-
works, with Layer Normalization and Residual Con-
nections to enhance stability and learning efficiency.

• Classification Head: A special learnable token (class
token) is prepended to the sequence of patch embed-
dings. After processing through the Transformer, the
output of this token represents the overall image and
is fed into a classification head, typically a fully con-
nected layer, for predictions.

2.3.2 Training and Inference

The training setup involves optimizing the model using
cross-entropy loss, a standard choice for multi-class clas-
sification tasks, and the Stochastic Gradient Descent (SGD)
optimizer with a learning rate of 0.01. The training is con-
ducted with a batch size of 32 for both training and val-
idation datasets and spans 1000 epochs, during which the
best-performing model is saved based on validation accu-
racy.

During inference, the trained model predicts individual
test images by outputting the predicted class, the associ-
ated confidence score, and class-wise probabilities. These
predictions are visualized with the input image alongside
a bar chart that showcases the prediction probabilities for
all classes, allowing for an intuitive interpretation of the re-
sults.

3. Results and Discussion
3.1. Segmentation Results and Comparisons

3.1.1 Baseline U-NET

We evaluated the baseline U-Net model on the BraTS
dataset using the Dice coefficient as the primary metric to
assess segmentation accuracy. Over the course of 50 epochs
and approximately 2 hours of training on a T4 NVIDIA
GPU, the model achieved a final validation Dice score of
0.6497, demonstrating its ability to effectively segment tu-
mor regions. Comparison to GT and DeepLabV3 can be
seen in Figure 4.

3.1.2 SegNet

Figure 1 provides a qualitative visualization of the segmen-
tation results. The predicted segmentation closely aligns
with the ground truth segmentation mask, successfully iden-
tifying tumor regions. While larger tumor regions were
segmented with high precision, the model struggled to cor-
rectly classify the tumor type when more than one category
was present. Figure 2 provides another example where this
model struggles when all 3 classes of tumors are present.

The model was trained only for 6 epochs because of the
limited computational resources. This might explain its lim-
ited capability to distinguish between all the classes.

3.1.3 CLIP encoder-enhanced U-Net

Our CLIP-integrated BrainSegNet model achieved a valida-
tion Dice score of approximately 0.7866 after just 5 epochs,
suggesting that the pretrained CLIP encoder provides valu-
able semantic features for MRI segmentation. As shown
in Figure 3, the model accurately identified large tumor re-
gions and maintained coherent shapes, demonstrating the
benefits of global context from CLIP.



Figure 1. SegNet Segmentation Results: Comparison of the origi-
nal MRI image, ground truth segmentation, and predicted segmen-
tation.

Figure 2. SegNet Segmentation Results: Comparison of the origi-
nal MRI image, ground truth segmentation, and predicted segmen-
tation.

Figure 3. CLIP Encoder-Based U-Net Segmentation Results:
Comparison of the original MRI image, ground truth segmenta-
tion, and predicted segmentation.

Nevertheless, boundary precision and the segmentation
of smaller lesions remain challenging. Occasional over-
segmentation and missed details indicate room for refine-
ment and possible regularization. Training time and com-
putational limitations restricted us to a few epochs and re-
duced batches per epoch. With longer training, hyperpa-
rameter tuning, and domain-specific fine-tuning of CLIP, it
would achieve better segmentation performance.

3.1.4 DeepLabV3

This model outperformed the baseline U-NET by a small
amount achieving a validation dice score of 0.7007 which
is roughly a 5% increase demonstrating a decent ability in
this task. Comparison to GT and U-NET can be seen in
Figure 4.

Table 1. Comparison of Validation Dice Values Across Models

Model Dice Value (Validation)

U-NET 0.6497
SegNet 0.1123
BrainSegNet 0.7866
DeepLabV3 0.7007

3.1.5 Discussion and Comparison

While the U-Net performed well as a baseline, certain chal-
lenges and limitations were observed during the experi-
ments which suggest opportunities for improvement:

1. Computational Intensity: The computational de-
mands of the U-Net architecture required constrain-
ing the training process to 64 batches per epoch with a
batch size of 64, while validation and testing were lim-
ited to 16 batches per epoch. These constraints may
have hindered the model’s ability to fully leverage the
available data, potentially affecting generalization.

2. Slice-Based Input: The dataset was structured such
that each MRI volume was divided into 155 slices,
which were treated as individual samples. While this
approach simplifies the input format for the U-Net, it
may not have been optimal. Many slices contain lit-
tle to no tumor-related information, which could dilute
the learning signal and reduce the model’s focus on
informative slices. Incorporating methods to prioritize
slices with higher tumor content or processing volumes
in 3D could improve performance.

These findings validate the U-Net as a strong baseline
but underscore the need for architectural refinements, im-
proved data handling strategies, and enhanced training pro-
tocols to achieve state-of-the-art performance in brain tu-
mor segmentation. Future work will explore incorporating
3D processing for volumetric inputs, attention-based mech-
anisms, and methods to address class imbalance for more
robust and accurate segmentation.

3.2. Result for Vision Transformer (ViT)

We implemented a Vision Transformer (ViT) model to
classify brain MRI scans into four tumor categories: pi-
tuitary, glioma, meningioma, and no tumor. The model
achieved near-perfect training accuracy of 100%; how-
ever, the validation accuracy fluctuated significantly be-
fore stabilizing around 90% after 50 epochs, indicating
potential overfitting. During testing, the model demon-
strated its capability to predict tumor types with confidence
scores for each class, highlighting its ability to distinguish
among tumor categories effectively. The results were visu-
alized using confidence bar charts, emphasizing the model’s



Figure 4. Comparison of the, ground truth segmentation, and predicted segmentation for U-NET and DeepLabV3.

strengths in identifying the most probable class while offer-
ing insights into alternative predictions. This feature un-
derscores the model’s potential utility in supporting clini-
cal decision-making. To further enhance performance, fu-
ture work could focus on mitigating overfitting through ad-
vanced data augmentation strategies, regularization tech-
niques, or ensemble approaches, ultimately improving the
robustness and generalizability of the model’s predictions.

3.3. Web Interface

We created a simple website using NextJS and a small
backend using FastAPI to generate 3D GIFs of the brain
tumor regions given T1CE and FLAIR images.

Figure 5. ViT Classification

4. Final Remarks & Challenges
This project achieved significant progress despite sev-

eral computational challenges. Limited GPU resources on
Google Colab frequently caused disconnections and loss of

progress, disrupting training workflows. Additionally, long
training times, averaging 25 minutes per epoch, constrained
our ability to run all models under consistent conditions.
Some models were trained for more epochs than others,
affecting the comparability of results. Addressing these
limitations in future work, through access to more reliable
and powerful computational resources, would enhance con-
sistency, streamline experimentation, and allow for deeper
model evaluation.

Google Drive link with all project files: https://
drive.google.com/drive/u/1/folders/1Js_
updyjydAYJVjmC3a4cYUBbF6A1aLu

5. Distribution of Tasks
• Deeksha: Implemented a CLIP-enhanced U-Net

model for brain tumor segmentation, including pre-
processing the BraTS 2020 dataset, adapting CLIP’s
encoder for two-channel MRI inputs, and training the
model. Also evaluated performance using Dice met-
rics, experimented with loss functions, and conducted
hyperparameter tuning.

• Samir: I have implemented the SegNet as an alterna-
tive segmentation model on the BraTs2020 dataset. I
also worked on pre-processing the dataset and visual-
ized segmentation results with the SegNet model.

• Seyeon: Integrated a Vision Transformer (ViT)-based
U-Net for the brain tumor segmentation task, trained
and evaluated the model on the BraTS dataset, and
compared its performance with the baseline U-Net.
Analyzed improvements and documented insights.

• Abdulaziz: Implemented a baseline U-NET and

https://drive.google.com/drive/u/1/folders/1Js_updyjydAYJVjmC3a4cYUBbF6A1aLu
https://drive.google.com/drive/u/1/folders/1Js_updyjydAYJVjmC3a4cYUBbF6A1aLu
https://drive.google.com/drive/u/1/folders/1Js_updyjydAYJVjmC3a4cYUBbF6A1aLu


DeepLabV3. Developed a website to showcase the re-
sults of the model allowing users to upload their own
MRI images and return the model’s output.

• Avi: Developed a DCGAN-based approach for data
augmentation and assisted in generating evaluation
metrics (Dice). Documented insights from the aug-
mented data experiments and contributed to overall
performance analysis.
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