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Abstract

In this paper, we implement and evaluate two backdoor attack strategies: the1

BadNets attack by Gu et al.(2) and the Hidden Trigger Backdoor Attack proposed2

by Saha et al(1). We implement BadNets on the CIFAR-10 dataset and Hidden3

Trigger Backdoor Attack on TinyImageNet (4), and assess the detectability of both4

using Neural Cleanse (3), a reverse-engineering defense method. Our goal is to5

investigate whether this state-of-the-art defense can successfully detect visible and6

stealthy attacks alike. Neural Cleanse was able to detect the BadNets attack and also7

identified suspicious triggers in two separate experiments on the Hidden Trigger8

attack, despite the claim of stealthiness by the latter. We also discuss the synergies9

between these attacks and Neural Cleanse, analyze their shared assumptions, and10

evaluate alternative detection metrics like max/min L1 norm ratio and relative11

percent difference over the original anomaly index.12

1 Introduction13

Backdoor attacks pose a serious threat to machine learning systems, mainly in outsourced training or14

untrusted data pipelines. In these attacks, adversaries poison the training data with samples embedded15

with a specific trigger, which causes targeted misclassifications at test time, without impacting16

performance on clean inputs.17

In this paper, we investigate two representative backdoor attack startegies. The first is BadNets (2),18

a canonical method that uses a visible trigger and relabeling poisoned inputs. The second is the19

Hidden Trigger Backdoor Attack (1), which generates clean-labeled poisoned images that are visually20

indistinguishable from the target class and only activates the backdoor at test time via a secret trigger21

by operating in feature space. Despite its stealth, the attack achieves high misclassification rates22

while maintaining high accuracy on clean data.23

Our primary objective was to test whether these attacks could be detected by Neural Cleanse (3),24

a defense that attempts to reverse-engineer a trigger with minimal perturbations needed to induce25

targeted misclassification. If one class requires a significantly smaller perturbation (L1 norm) to26

induce misclassification, it is flagged as suspicious. Although Neural Cleanse was designed to detect27

attacks like BadNets, it was not originally evaluated on stealthy attacks such as Hidden Trigger.28

We implemented BadNets on CIFAR-10 and the Hidden Trigger Backdoor Attack on TinyImageNet.29

Neural Cleanse successfully detected the BadNets attack and, notably, was also able to detect the30

Hidden Trigger attack in two separate experiments. This directly challenges the original claim by31

Saha et al. (1), who state that their proposed attack "cannot be easily defended using a state-of-the-art32
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defense algorithm for backdoor attacks." Despite the stealthy design of the Hidden Trigger attack,33

our experiments demonstrate that Neural Cleanse remains a viable detection mechanism. In both34

experiments, the poisoned models exhibited low L1 norms for the target class and high max/min35

norm ratios, allowing the defense to flag the backdoor successfully. These results suggest that, under36

the right configurations and detection metrics, even feature-space attacks designed for stealth can be37

uncovered.38

In addition to reproducing the attacks and evaluating Neural Cleanse, we analyze the shared assump-39

tions of all three papers, explore their conceptual synergies, and evaluate alternative anomaly metrics40

that may improve detection in subtle attack scenarios.41

2 Background and Related Work (Synergies of Existing Literature)42

In this section, we review three important contributions to the backdoor attacks literature: BadNets,43

Hidden Trigger Backdoor Attacks, and Neural Cleanse.44

2.1 BadNets45

Introduced by Gu et al. (2), BadNets is one of the first demonstrations of backdoor attacks on deep46

neural networks. In their approach, they inserted a visible trigger (e.g., a yellow squre, a flower, or a47

bomb) into training images and assigning them the chosen target label of the attacker. At test time,48

the presence of this trigger caused the targeted misclassification, and in the meantime the model49

continued to perform normally on clean inputs. This attack can be considered dangerous because50

it preserves validation accuracy, avoiding detection by standard evaluation protocols. Despite the51

trigger’s visibility, BadNets was influential in revealing vulnerabilities in DNNs and has inspired a52

wide range of follow-up attacks with increasingly stealthy designs.53

2.2 Hidden Trigger Backdoor Attacks.54

Saha et al. (1) took it a step further and introduced attacks where the poisoned samples look55

completely benign. There is no visible detectable trigger. The authors of this paper introduced56

a stealthy variant of the backdoor threat model that was originally introduced by the authors of57

BadNets(2), building on some of the assumptions but they addressed two weaknesses: visible triggers58

and incorrect labels. While BadNets poisons the training set by applying an visible(explicit) trigger to59

inputs from a source class and relabeling them to the target class, Hidden Trigger Backdoor Attacks60

retain correct labeling and ensure the trigger remains hidden until test time.61

Both attacks share similarities in the threat model: the attacker injects poisoned data during training62

so that during inference time a specific trigger pattern causes the model to misclassify a source class63

image as a target class that is preselected. But since visible triggers and incorrect labels are detectable64

by manual inspection, Saha et al. address that it makes standard backdoor attacks less practical in65

real-world, large-scale training pipelines.66

To address this, they proposed a clean-label attack strategy where the trigger is never shown during67

training, and the poisoned examples are visually similar to the target class. Their method used68

optimization that balances pixel-level similarity to the target class and feature-level similarity to a69

triggered source image.70

Given a source image s, a trigger patch p, and a binary mask m that determines the patch location,71

the attacker constructs a patched source image:72

s̃ = s⊙ (1−m) + p⊙m

They then generate poisoned image z by solving the following optimization:73

argmin
z

∥f(z)− f(s̃)∥22 subject to ∥z − t∥∞ < ϵ

Here, t is a clean target image, and f(·) extracts intermediate features (e.g., from the fc7 layer of74

AlexNet). This constraint is to make sure that z stays visually similar to the target image, so its75
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correct label is kept. Since this constraint is at a feature level, it makes sure z behaves like a patched76

source image and encodes the hidden backdoor.77

This optimization is performed using Projected Gradient Descent (PGD), alternating between gradient78

updates and projection into the ϵ-bounded ℓ∞ ball around t.79

To improve generalization, the authors also scaled the attack using an expectation-over-sources80

formulation: at each iteration, they sampled different source images and patch locations to make the81

poisoned data aware of a wider distribution of the trigger. They optimized for multiple poisoned82

samples simultaneously by matching them to patched source images in feature space iteratively. They83

used a greedy algorithm to assign each poisoned image zk to the nearest patched source image s̃a(k):84

argmin
{zk}

K∑
k=1

∥f(zk)− f(s̃a(k))∥22 subject to ∀k, ∥zk − tk∥∞ < ϵ

Once the poisoned images {zk} are generated, they are added to the training set and labeled with85

their respective target classes. These images cannot be visually told apart from clean targets and do86

not have any visible triggers, so they cannot be detected by humans and common defenses.87

At test time, the attacker pastes the previously unseen trigger onto any image from the source class.88

The model confidently misclassifies the image as the target class. This also generalizes to unseen89

source images and trigger locations.90

Even though the surface-level behavior of the Hidden Trigger attack seems distinct from BadNets (i.e.,91

no visible trigger, no label corruption), it follows the same fundamental threat model and expands on92

it with more transferable and undetectable mechanisms.93

2.3 Neural Cleanse94

Wang et al.(3) introduces a robust defense mechanism to detect and mitigate backdoor attacks in95

DNNs. The idea is actually inspired by the threat model introduced by BadNets(2). Neural Cleanse96

assumes that we have access to a potentially backdoored model and a small clean validation set. Its97

goal is to detect whether a backdoor exists, identify the likely target label and then reverse-engineer98

the trigger, and to mitigate the attack using pruning or unlearning. The authors evaluated their method99

on models injected using BadNets and Trojan Attack techniques. They did not explicitly test on100

hidden trigger attacks like those in Saha et al.(1)(which we have done here in this paper as we will101

describe in the later section). Trigger Reverse Engineering: For each output label yt, Neural Cleanse102

searches for a minimal trigger that causes misclassification from other labels into yt. Then they apply103

the trigger using a differentiable injection function:104

A(x,m,∆) = x′
105

x′
i,j,c = (1−mi,j) · xi,j,c +mi,j ·∆i,j,c

Here, A(·) is the function applying trigger to clean image, x is the clean image, m is a continuous106

mask (same size as image, values in [0, 1]), and ∆ is the trigger pattern. The optimization minimizes107

a weighted combination of classification loss and the L1 norm of the mask:108

min
m,∆

ℓ(yt, f(A(x,m,∆))) + λ · |m|

The goal is to find a sparse trigger that causes clean inputs from any source class to be classified109

as yt. If the |m| value is small, then a tiny modification can cause misclassification, which is how110

a backdoor behaves. Also here λ is a hyperparameter that balances between making the trigger111

effective and keeping it small. A smaller λ allows for more aggressive misclassification, and a larger112

λ stands for smaller (sparser) masks.113

Detecting the Backdoor: After repeating the above mentioned optimization for every label, Neural114

Cleanse measures the L1 norm of each candidate trigger mask and uses outlier detection (via Median115

Absolute Deviation) to flag unusually small masks. A small mask implies that the input needs only116

slight modification to force a target label prediction, which is evidence that there is a backdoor. This117

is given as Observation 2 in the paper:118

δ∀→t ≤ |Tt| ≪ min
i,i ̸=t

δ∀→i
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Here, δ∀→t is the minimum perturbation needed to misclassify inputs from all classes into target label119

t and Tt is the reverse-engineered trigger for that label.120

Mitigation by Pruning and Unlearning: Once the reversed trigger is obtained, Neural Cleanse offers121

two defenses: 1. Pruning: The method checks neuron activations under clean and triggered inputs to122

identify the neurons affected by the backdoor. These are pruned by zeroing their activations, which123

reduces the attack success rate with negligible drop in accuracy on clean data. 2. Unlearning: The124

model is retrained using reversed trigger images but with correct labels which causes unlearning of125

the backdoor association. This is effective for Trojan attacks, where backdoor behavior is associated126

to a narrow set of neurons.127

Neural Cleanse achieved high detection performance, identifying infected labels with over 99.7%128

confidence and near-zero false positives on tasks like MNIST, GTSRB, PubFig, and Trojan Water-129

mark.130

2.4 Synergies Across the Attack Types and Defense131

BadNets and Hidden Trigger backdoor attacks share a common threat model: the attacker poisons132

training data so that a specific perturbation, visible or stealthy, causes inputs from a source class to133

be misclassified into a target class. BadNets uses an explicit patch and label poisoning, and Hidden134

Trigger relies on clean-label examples optimized in feature space to display backdoor behavior135

without visual perturbations.136

BadNets is straightforward, whereas Hidden Trigger is more designed to evade human inspection and137

traditional defenses. But both attacks create shortcut associations in the decision boundary of the138

model, whether it is in pixel space or latent representations.139

Neural Cleanse leverages this shared behavior by searching for minimal perturbations that cause140

targeted misclassification. Though they were originally validated on visible attacks like BadNets141

and Trojan attacks, in our report we will show that its mechanism can generalize to feature-aligned142

attacks like Hidden Trigger as well. In our experiments, Neural Cleanse was able to identify target143

labels for both attack types.144

2.5 Gaps in Literature and Our Motivation145

While Neural Cleanse has shown good performance in detecting backdoors like those introduced146

in BadNets, it has been limited to attacks with visible, localized triggers. There is a lack of studies147

assessing its effectiveness against more stealthy, clean-label attacks such as the Hidden Trigger attack148

described by Saha et al(1).149

Also, mitigation strategies proposed in Neural Cleanse, such as neuron pruning and unlearning, have150

not been tested on attacks that activate more distributed sets of neurons. This raises questions about151

generalizability of these defenses across different types of backdoor attacks and datasets.152

Thus in our paper, we evaluated Neural Cleanse on both the traditional BadNets (using CIFAR-10)153

and the more stealthy Hidden Trigger attacks (using TinyImageNet). We assessed whether the154

minimal trigger recovery technique was effective under varying levels of attack stealth, and explored155

whether detection metrics beyond the anomaly index offer improved robustness.156

3 Methodology157

Our methodology is structured into two main stages: (1) implementing the backdoor attacks (BadNets158

and Hidden Trigger), and (2) detecting potential backdoors using Neural Cleanse. Due to computa-159

tional constraints, our experiments on the Hidden Trigger were conducted in a binary classification160

setting on the TinyImageNet dataset (image resolution 64×64), with randomly hand-picked source161

and target classes, and for BadNets on the CIFAR-10.162

3.1 Hidden Trigger Backdoor Implementation163

We reproduced the attack proposed in (1), which poisons the dataset with clean-label images that164

are feature-wise similar to patched source images but visually indistinguishable from the target165
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class. We used AlexNet-style architecture and the fc7 layer as the feature extractor f(·). Poisoned166

samples were generated using the Projected Gradient Descent (PGD) method under an ℓ∞ constraint167

of ϵ = 16.168

For each experiment, we optimized multiple poisoned examples by assigning them to the nearest169

patched source images in the feature space and minimizing the total squared ℓ2 distance. Poisoned170

images were then added to the training set with correct labels, and we trained a binary classifier with171

a standard training protocol.172

We diverged slightly from the original evaluation criteria. While Saha et al. define a successful attack173

as one that reduces accuracy below 50%, we argue this is insufficient. Instead, we explicitly compute174

the Attack Success Rate (ASR), defined as the proportion of source class inputs misclassified as175

the target class, under three conditions: (1) clean model, (2) poisoned model with trigger, and (3)176

poisoned model without trigger.177

3.2 Neural Cleanse Defense and Thresholding178

We implemented the trigger reverse-engineering method from Neural Cleanse (3), which optimizes a179

mask and trigger pattern for each class. The L1 norm of the resulting mask serves as an estimate of180

how easily the class can be reached via a minimal perturbation.181

To evaluate whether a model is suspicious, we first run Neural Cleanse on the clean model and record182

the minimum and maximum L1 norms across classes, as well as the percent difference between them.183

These values serve as our empirical thresholds. A model is flagged as backdoored if, for any class,184

the L1 norm is significantly smaller (i.e., both the max/min ratio and percent difference exceed the185

clean thresholds).186

4 Experiments and Results187

4.1 BadNets on CIFAR-10188

We reproduce the BadNets attack (2) on CIFAR-10 and then run Neural Cleanse on the resulting189

backdoored model.190

4.1.1 Implementation191

We began by loading the standard CIFAR-10 split (50,000 training and 10,000 test images) and192

constructing a 5× 5 white-square trigger patch p embedded in the bottom-right corner via a binary193

mask m. To poison the training data, we selected 10% of images from the source class s, applied the194

patch according to195

xpatched = (1−m)⊙ x+m⊙ p,

and relabeled each patched image as the target class t. We then trained a ResNet-18 (randomly196

initialized, output dimension 10) using SGD (learning rate 0.01, momentum 0.9, ℓ2 weight decay197

5× 10−4) with a batch size of 64. Finally, the resulting backdoored weights were saved.198

4.1.2 Neural Cleanse Detection199

After training, we ran our adapted Neural Cleanse implementation to the backdoored model. For each200

class, the method reverse-engineered the minimal trigger and computed the L1 norm of its mask. The201

following L1 norms were reported 1:202

The max/min L1 norm ratio was 19.03, and the class with the smallest norm-label 0, was correctly203

flagged as suspicious by Neural Cleanse. This confirms that even on CIFAR-10 with a visible 5× 5204

patch- Neural Cleanse reliably detects the backdoor. To our knowledge, Neural Cleanse has not yet205

been evaluated against BadNets trained on CIFAR-10, so our implementation thus serves as a test of206

its generalizability to this dataset.207

4.2 Hidden Trigger Attack on TinyImageNet208

We conducted two binary classification experiments on TinyImageNet using randomly selected source209

and target class pairs. The models were evaluated in three configurations: a clean model trained only210
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Table 1: Recovered mask ℓ1 norms on backdoored CIFAR-10.

Label Mask L1 Norm
0 17.8224
1 50.6564
2 152.4845
3 339.1146
4 313.8152
5 265.0616
6 291.4946
7 201.0282
8 282.8271
9 173.6248

Metric Value
max/min ratio 19.03
suspicious label 0

on clean data, a poisoned model evaluated with the trigger applied at test time, and a poisoned model211

evaluated without the trigger.212

4.2.1 Model Accuracy and Attack Success Rate213

The attack was evaluated using two metrics:214

• Accuracy (All Classes): Overall classification accuracy across both classes.215

• Attack Success Rate (ASR): The fraction of inputs from the source class misclassified as216

the target class.217

These results verify that the attack was effective: When the trigger was present, the ASR increased to218

98% in both experiments. Fig 1 summarizes the performance of each model configuration.219

Figure 1: Accuracy vs ASR for Experiment 1 and Experiment 2. Left: Clean, poisoned (with trigger),
and poisoned (no trigger) performance in Experiment 1. Right: Same metrics for Experiment 2.

Interestingly, in both experiments the poisoned model without the trigger performed similarly—or220

slightly better—than the clean model. We hypothesize this may be due to training randomness or the221

low resolution (64×64) of TinyImageNet introducing variability in representation learning.222

4.2.2 Neural Cleanse Detection on Hidden Trigger Models223

We applied Neural Cleanse to both clean and poisoned models to test whether this state-of-the-art224

defense could detect the presence of a hidden backdoor.225

Clean Models: Threshold Calibration We first ran Neural Cleanse on the clean models to establish226

empirical thresholds for detection. The max/min L1 norm ratio and percent difference are shown in227

Table 2. Based on these, we set conservative detection thresholds:228

• Max/Min Ratio Threshold: 1.8229
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• Percent Difference Threshold: 25%230

Table 2: Neural Cleanse Metrics on Clean Models (Hidden Trigger).

Experiment Source L1 Norm Target L1 Norm Max/Min Ratio Percent Diff
Experiment 1 226.30 150.51 1.50 20.1%
Experiment 2 268.88 176.28 1.53 20.8%

Poisoned Models: Detection Results When applied to the poisoned models, Neural Cleanse231

successfully flagged the target class in both experiments, exceeding both thresholds. These results232

are summarized in Table 3.233

Table 3: Neural Cleanse Detection Results on Poisoned Models (Hidden Trigger).

Experiment Source L1 Target L1 Ratio Percent Diff Detected
Experiment 1 287.76 99.36 2.90 48.7% Yes
Experiment 2 212.30 107.11 1.98 32.9% Yes

The pronounced difference in L1 norms between clean and poisoned models gave us an early signal234

that the backdoor was present. This was further confirmed by the visualizations of the reconstructed235

trigger and mask (Figure 2), which revealed clearer spatial patterns and localized activations in the236

poisoned model compared to the noisy outputs from the clean model.237

4.2.3 Trigger Reconstruction Visualization238

We visualized the reconstructed triggers generated by Neural Cleanse for both the clean and poisoned239

models. In both experiments, the poisoned models yielded clearer and more structured patterns for240

the target class, suggesting the presence of a learned shortcut in the input space.241

Figure 2: Reconstructed triggers for Experiment 1. Left: Clean model (high noise). Right: Poisoned
model (less noisy).

Figure 3: Reconstructed triggers for Experiment 2. Neural Cleanse recovers a consistent trigger
pattern from the poisoned model (right), but not from the clean model (left).
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5 Conclusion and Future Work242

In this work, we reviewed two prominent backdoor attack strategies- BadNets with a visible patch243

trigger, and Hidden Trigger Backdoor Attacks which rely on clean-label poisoning and feature-space244

manipulation. Previous work has said that Hidden Trigger attacks are undetectable by existing245

defenses, but our experiments challenged this.246

Using Neural Cleanse, a reverse-engineering based defense, we showed that even stealthy backdoors247

embedded in TinyImageNet models can be flagged by analyzing L1 norms and trigger masks. By248

empirically tuning detection thresholds based on clean model behavior, we were able to identify the249

presence of a hidden backdoor in two separate experiments. The visualized triggers from poisoned250

models showed significantly clearer and more structured patterns than those recovered from clean251

models.252

These findings suggest that defenses like Neural Cleanse, though originally designed for patch-based253

attacks, can also generalize to more sophisticated feature-space attacks under certain conditions.254

For future work, we plan to:255

• Extend our evaluation to multi-class settings, beyond binary classification.256

• Investigate robustness of Neural Cleanse under adaptive attacks designed specifically to257

evade detection.258

• Explore the performance of alternative defenses and anomaly metrics on stealthy attacks.259

• Evaluate mitigation strategies (e.g., unlearning or pruning) in the context of clean-label260

backdoor attacks.261

6 Declaration of Individual Contributions262

6.1 Abdulaziz263

Implemented the Hidden Trigger Backdoor Attack and conducted all related experiments on the264

TinyImageNet dataset. This included modifying the original evaluation protocol used in the paper by265

Saha et al. (1), running the models under clean and poisoned settings, and integrating Neural Cleanse266

for detection. Through this process, I found that their claim—that the attack could not be detected by267

state-of-the-art defenses—did not hold in our setting, as Neural Cleanse was able to reliably identify268

the backdoor using empirical thresholds and L1 norm comparisons.269

6.2 Deeksha270

Reproduced and evaluated the BadNets attack on CIFAR-10 by training a ResNet-18 from scratch;271

Adapted the Neural Cleanse reverse-engineering pipeline to detect the backdoor on the BadNets272

model, thus testing its generalizability to CIFAR-10; Conducted literature review on BadNets, Hidden273

Trigger Backdoor, and Neural Cleanse to find their synergies, discussed their shared threat model and274

defense assumptions to write the “Background and Related Work(Synergies of Existing Literature)”.275
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